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1 Introduction

Scientific computing is concerned with the construction of mathematical models, numerical so-
lution techniques and the application of computers to simulate and optimize scientific and en-
gineering problems. Within the last 40 years, scientific computing has changed dramatically.
Vast advances were made in the development of hardware architectures. However, despite the
steady increment of available computing power, the major breakthroughs in scientific computing
were attained after the advent of modern numerical methods. This progress made it possible for
the complexity of models to be increased enormously. As a result, nowadays certain scientific
problems can be simulated with an accuracy that was unthinkable just a decade ago. In its
course of evolution, scientific computing has become indispensable in more and more fields, such
as finance and medicine.

The insatiable greed for treating more and more complex problems requires the continuous
advancement of numerical methods. Further, the implementation of a modern numerical algo-
rithm has to be efficient and is expected to achieve peak performance on the available hardware
resources. For these reasons the development of software is an essential component within scien-
tific computing. The proper realization and design of such software requires an interdisciplinary
cooperation of experts from at least three domains:

1. Experts from the underlying problem domain are crucial for the adequate creation of
mathematical models. These experts are not necessarily specialists in high-performance
computing nor numerical analysis. However, they have to be able to apply (and to some
degree extend) the software for their research.

2. Specialists in high-performance computing (HPC) who are capable of implementing a
numerical algorithm such that the available hardware can be exploited to achieve peak per-
formance. Scientific software has to be designed in such a way that these highly optimized
implementations can be integrated easily.

3. In order to take advantage of new advances in numerical analysis, it is crucial for a
scientific software package to enable researchers in these fields to contribute state of the
art methods. In this respect, rapid adoption of such methods can only be expected if
the implementation can be accomplished easily. In particular, it must not require a deep
knowledge of the complete software package.

Typical tasks in the development of scientific software are related to all these domains; for exam-
ple, the implementation of a modern numerical method, subsequently tuning this implementation
and finally applying the method to a concrete problem. Using numerical methods and reference
implementations from popular textbooks is often not sufficient for the development of serious sci-
entific software. In general, state of the art algorithms are not covered by these books and neither
are the corresponding implementations suited to achieve high-performance. Software packages
like Mathematica [90], Maple [48] and Matlab [49] provide high-level programming languages
that can support the initial development of new numerical methods and the rapid implementa-
tion of prototypes. However, these standard packages are often not sufficient as HPC kernels
and neither are they intended for the realization of scientific software that has to deal with large
scaled problems on an HPC plattform. Achieving optimal efficiency and scalability requires the
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6 1 Introduction

adaption of algorithms to a specific problem. This in particular includes the adaption of data
structures to exploit special features of the problem at hand. Furthermore, taking full advantage
of the underlying hardware often requires the complete re-implementation of numerical routines
in low-level programming languages. Ideally, it should be possible for experts to contribute to
the development of scientific software while working solely on their own area of expertise. In
order to allow such a division of work and to enhance the developmental process advanced tools
and techniques are required.

Object-oriented programming languages like C++ exhibit features that can ease the develop-
ment, maintainability, extensibility and usability of complex software packages. However, most
libraries in the field of high performance computing are still implemented in non-object-oriented
languages like Fortran or C. This is mainly due to the fact that runtime overhead resulting from
abstraction is sometimes hard to avoid. At this point it should be mentioned that in the scientific
computing community (and especially in the field of high-performance computing) C++ used
to have a bad reputation due to a bad runtime performance. In particular, C++ libraries could
often hardly compete with established Fortran libraries.

This work addresses how the C++ programming language can be extended through libraries
to enhance and simplify the development of scientific software. Efforts made in this respect
resulted in the design and implementation of the C++ library FLENS (Flexible Library for Ef-
ficient Numerical Solutions) [45] as presented in this work. Further, concepts and techniques that
allow the effective collaboration of specialists from different disciplines within the development
of scientific software will be demonstrated based on FLENS. The performance issue mentioned
above was in particular addressed throughout the design and implementation of FLENS.

This work is organized as follows. Chapter 2 briefly summarizes related work that influenced
the design and implementation of FLENS. Chapter 3 addresses the challenge of utilizing external
high-performance libraries that are implemented in non-object-oriented languages. In particular,
this chapter illustrates how low-level abstractions for data structures and routines can enhance
the usability of these libraries without sacrificing efficiency. Chapter 4 illustrates the elementary
concepts that were realized in the design of the FLENS library to achieve extensibility, flexibility,
reusability and ease of use without sacrificing performance. Techniques for extending FLENS as
well as concepts for the implementation of flexible and reusable methods based on FLENS, are
briefly outlined in Chapter 5.

Considering some standard numerical problems, the techniques indicated in chapter 5 will
be illustrated in more detail in the following chapters. Chapter 6 illustrates the implementa-
tion of numerical solvers for the Dirichlet-Poisson problem. Most notable in this respect is the
implementation of the multigrid method presented in this chapter. The possibility of attain-
ing parallelization without modifying the implementation of the multigrid method makes the
potential of FLENS vivid. In order to further demonstrate the reusability, the implementation
of the multigrid method will be applied in Chapter 7 to numerically solve the Navier-Stokes
equations in two space dimensions on a simple domain. The subject of Chapter 8 is the imple-
mentation of the Finite Element Method for numerically solving the Dirichlet-Poisson Problem
on bounded Lipschitz domains with piecewise polygonal boundaries. For this toy example, the
chapter presents a compact and expressive implementation and hereby indicates how FLENS
could be utilized in teaching. Furthermore, sparse matrix types in FLENS and solvers for sparse
systems of linear equations are illustrated.

Conclusions in Chapter 9 round off this work. Up-to-date benchmark results and the com-
plete source code of FLENS (including all the examples illustrated in this work) are available
on

http://flens.sf.net/

http://flens.sf.net/


2 Related Work

The development of FLENS was influenced in various ways by other works as outlined in the
following. These works originate from different domains which loosely constitute the sections of
this chapter.

Section 2.1 summarizes libraries and techniques from the field of high performance computing,
while Section 2.2 introduces software packages that provide level-languages especially designed
for numerical and scientific applications. As briefly outlined in Section 2.3, a gainful utilization
of object-oriented languages for scientific computing is no trivial task. Further, libraries that
have contributed notable techniques to overcome certain issues are introduced in this section.
Section 2.4 is dedicated to research focused on improving and ensuring software quality. Sec-
tion 2.5 highlights the origin of the FLENS library. Finally, Section 2.5 outlines how FLENS
could be utilized by other libraries which are well established in the field of scientific computing.

2.1 Libraries for High Performance Computing (HPC)

In the field of HPC various libraries exist that are well established and successful in this domain.
In the following, different HPC libraries are summarized that influenced the development and
design of FLENS.

2.1.1 BLAS and LAPACK

BLAS (Basic Linear Algebra Subprograms) [58] specifies a set of kernel routines for linear alge-
bra operations such as vector and matrix multiplications. Although a reference implementation
exists, BLAS actually constitutes an application programming interface. BLAS became a de
facto standard in the field of scientific and high performance computing for which various imple-
mentations exist. Nowadays highly optimized BLAS implementations for all relevant hardware
architectures are available. Thus, using BLAS routines as building blocks for scientific software
ensures portability. Further, software based on BLAS can achieve peak performance on every
platform.

LAPACK (Linear Algebra PACKage) [3] is a Fortran library for numerical computing. Among
others, LAPACK provides routines for solving systems of linear equations, least-square problems,
eigenvalue and singular value problems. Almost all LAPACK routines make use of BLAS to
perform critical computations. This enables LAPACK to provide optimal performance while
remaining portable.

Development of BLAS and LAPACK origins in the 1970s. Motivation for the development of
BLAS and LAPACK was to provide efficient and portable implementations for solving systems
of linear equations and least-square problems. In such implementations certain linear algebra
operations are frequently recurring. Good engineering practice suggests specifying a set of rou-
tines providing the needed functionality. Keeping the number of specified routines low enhances
portability. At the same time implementations dedicated to a particular platform can exploit
the underlying hardware architecture without sacrificing compatibility. The original BLAS [44]
specified Fortran routines for scalar and vector operations (e.g. sum of vectors, dot-products,
vector norms, . . . ) and was successfully exploited by LINPACK [25] the predecessor of LAPACK.
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8 2 Related Work

In order to take advantage of more modern hardware architectures (e.g. vector computers and
parallel computers) in the 1980s the original BLAS was extended. This resulted in BLAS Level
2 [24] specifying matrix-vector operations and BLAS Level 3 [23] for matrix-matrix operations.
Combining and extending the functionality of EISPACK [70] (a library for eigenvalue and sin-
gular value problems) and LINPACK finally resulted in LAPACK.

LAPACK and BLAS routines are intended for merely dense and banded matrices. The type
of matrix elements can be real or complex with single or double precision. In recent years, BLAS
and LAPACK specifications were extended for sparse vectors/matrices as well as for element
types with arbitrary or extended precision. However only few (commercial) implementations for
these extensions are currently available.

Integration of BLAS and LAPACK into FLENS is primarily covered in Chapters 3 and
Chapter 4. As exemplified in Chapter 5, extensions of BLAS and LAPACK (e. g. new matrix
types, new element types) can be easily incorporated into FLENS.

2.1.2 Automatic Performance Tuning of High Performance Libraries

Modern hardware architectures exhibit a complexity that makes it hard to implement high per-
formance libraries. Cache and pipeline effects are almost unpredictable without an extraordinary
knowledge of the underlying architectures. Another relevant factor for the performance is the
utilized compiler. Many hardware vendors also develop their own compilers for this reason which
enables them to realize optimal implementations of high performance libraries.

Without these resources and possibilities performance tuning requires randomly adjusting
code and measuring the results [85]. Explorative optimization is an approach that can be outlined
as ‘systematically adjusting code and measuring the results’. For an algorithm certain factors
are identified that are relevant for performance. For loop structures such factors might be related
to, for example, loop unrolling or tiling. The library gets tuned for a specific hardware platform
by systematically changing these parameters and measuring the resulting performance. Using
this optimization method, libraries can be developed (at least to a certain extent) independent
of a concrete architecture, while a near-optimal performance can be achieved after tuning.

PHiPAC (Portable High Performance Ansi C) [7, 8, 9] and ATLAS (Automatically Tuned
Linear Algebra Subprograms) [88, 89] are BLAS implementations based on the explorative op-
timization approach. The same technique is used by FFTW (Fastest Fourier Transform in the
West) [30] for the implementation of the Fast Fourier Transforms. PHiPAC, ATLAS and FFTW
are all capable of competing with vendor tuned implementations and in some cases are even su-
perior. Moreover, all these libraries are open source, free and non-commercial.

ATLAS and PHiPAC can be utilized in FLENS as BLAS implementations. Depending on
matrix and vector sizes for example, different BLAS implementations exhibit different perfor-
mance results. The explorative optimization approach could be used in FLENS to choose the
optimal implementations for a given problem size. Examples for integrating FFTW into FLENS
are given in Chapter 6.

2.1.3 HPC Libraries for Parallel Computers with Distributed Memory

ScaLAPACK (Scaleable LAPACK) [59, 37, 13] includes a subset of LAPACK routines that were
redesigned for parallel computers with distributed memory (e. g. a computer cluster, that is, a
group of computers interconnected via network). Fundamental building blocks of the ScaLA-
PACK library are:

1. PBLAS (Parallel BLAS) a distributed memory version of the Level 1, 2 and 3 BLAS.

2. BLACS (Basic Linear Algebra Communication Subprograms) a library for handling inter-
processor communication.

One of the design goals of ScaLAPACK was to have the ScaLAPACK routines resemble their
LAPACK equivalents as much as possible.
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Using FLENS to implement parallel numerical routines is addressed in Chapters 6 and 7. The
concepts applied there are similar to those used in the realization of ScaLAPACK. In particular,
it is possible to integrate ScaLAPACK into FLENS.

2.1.4 Direct Solvers for Sparse Linear Systems of Equations

Numerical methods for solving partial differential equations often lead to huge linear systems of
equations, where the coefficient matrix is sparse. Solvers for these systems can be classified as
either iterative or direct solvers. While Chapters 6 and 7 are mainly focused on iterative solvers,
Chapter 8 illustrates the possibility of integrating direct solvers into FLENS. A general overview
and comparison of different direct solver libraries is given in [33]. Some of these libraries are
briefly described in the following:

1. SuperLU [46, 20, 19] is a general purpose library for the direct solution of large, sparse,
non-symmetric systems of linear equations on high performance machines. The library is
written in C and is callable from either C or Fortran.

2. UMFPACK [16, 15, 18, 17] is a set of routines for solving unsymmetric sparse linear systems
using the so called Unsymmetric MultiFrontal method. The library is implemented in C.

3. PARDISO (PArallel DIrect SOlver) [63, 64] is a thread-safe, high-performance, robust,
memory efficient and easy to use software for solving large sparse symmetric and unsym-
metric linear systems of equations on shared memory multiprocessors. The library is based
on C and Fortran source code.

As described in Chapter 8, the efficient storage of sparse matrices is crucial for the overall
performance. Depending on the numerical application different formats are favorable. A good
introduction on these formats and their implementation is given in [22].

2.2 High-level Languages for Numerical Computations

Software packages like Matlab [55, 49] and Octave [27] provide high-level languages for numerical
computations. The Octave package is a non-commercial, open source project which is mostly
compatible with the commercial Matlab package. The scope of these packages can be extended
and covers, e. g. , numerical linear algebra, numerical solvers for ordinary and partial differential
equations and numerical optimization.

Due to the dedicated programming language, numerical algorithms can be implemented based
on a syntax which is close to the mathematical notation. The expressive syntax not only allows
rapid prototyping but also makes it easier to ensure the correctness of the resulting implementa-
tion. Both packages use external libraries (e. g. BLAS and LAPACK implementations, libraries
for numerical optimizations) to carry out numerical computations. Hence, they can be consid-
ered as high-level interfaces to these libraries1. On the one hand, Matlab and Octave benefit
from the performance provided by these external libraries. On the other hand, in general not all
features of these libraries can be exploited. For instance, only two matrix types are supported,
namely dense and sparse matrices. Other matrix types (e. g. for matrices with band or block
structure) that are supported by BLAS and LAPACK are not available in Matlab and Octave.
The abandonment of a greater variety of matrix types is in favor for simplicity and ease of use.

Like Matlab and Octave, FLENS aims to provide an expressive and intuitive syntax. For this
purpose, FLENS adapted various ideas from these packages. Among others, this is reflected in
the usage of overloaded operators for basic linear algebra operations or the notation to refer to
matrix and vector slices (cp. Chapter 4). However, the primary intension of FLENS is distinct.
FLENS is intended to be a library for scientific and high performance computing. Instead of

1Actually the initial motivation to develop Matlab was to provide students a simple interface to LINPACK
and EISPACK [55].
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completely hiding internal technical details, this aim requires that users of FLENS have the
possibility to completely comprehend, follow and control what is going on. Sacrificing efficiency
or transparency for the sake of simplicity is not acceptable in the field of high performance
computing. How FLENS realized an interface satisfying these requirements is illustrated in
Chapters 3 and 4.

2.3 Scientific Computing in Object-Oriented Languages

Object-oriented languages exhibit features to ease the usage of techniques like encapsulation,
inheritance, modularity and polymorphism. These features ease the realization of large complex
libraries. However, most libraries in the field of high performance computing are still implemented
in non-object-oriented languages. This is mainly due to the fact that runtime overhead resulting
from abstraction is sometimes hard to avoid.

Beside object-oriented programming, the C++ programming languages [75] supports pro-
cedural and generic programming. In particular generic programming can be utilized for the
avoidance of runtime overhead due to abstraction. One of the first C++ libraries that could
compete in the field of high performance library was BLITZ++ ([79, 86, 83]). The BLITZ++
library applied techniques like expression templates [81], meta programming [82] and traits [56].
For small matrices and vectors a speedup factor of up to ten could be achieved. While BLITZ++
introduced revolutionary techniques, it only supported a small subset of the linear algebra oper-
ations specified by BLAS. It provides vector types and arrays, but no further specialized matrix
classes. In particularly, there is no support for sparse data types. A further issue is the com-
plexity of the expression template technique (cp. Section 4.3.2). Todd Verhuizen, the creator
of BLITZ++ and inventor of the expression template technique, states that this is a “... very
elaborate, complex solution which is difficult to extend and maintain. It is probably not worth
your effort to take this approach.” [84].

Currently, one of the most widespread C++ libraries for scientific computing is uBLAS
[87]. While the library is implemented using many of the concepts introduced by BLITZ++ (in
particular expression templates) it offers a full support of BLAS. In addition uBLAS provides
different sparse matrix implementations and corresponding linear algebra operations. However,
like for the BLITZ++ library, extending uBLAS (e. g. adding new matrix types) is a non-trivial
task.

A more complete list of object-oriented libraries and software can be found on the Object-
Oriented Numerics web site [80]. This list also includes libraries implemented in programming
languages different from C++.

FLENS adapted and extended some basic ideas from the expression templates technique for
the realization of its high-level BLAS interface described in Chapter 4. The modifications are in
particular focused on achieving a higher flexibility and simplifying extensibility.

2.4 Software Quality

Software Engineering is the computer science discipline concerned with developing large applica-
tions. Among others, software engineering covers techniques and methods for defining software
requirements, performing software design, software construction and software testing. All these
techniques and methods are intended for the production of high quality software. The IEEE
Standard 729-1983 [41] states a rather general definition of software quality as follows:

1. The totality of features and characteristics of a software product that bear on its ability to
satisfy given needs; e. g. conform to specifications.

2. The degree to which software possesses a desired combination of attributes.

3. The degree to which a customer or user perceives that software meets his or her composi-
tions expectations.
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4. The composite characteristics of software that determine the degree to which the software
in use will meet the expectations of the customer.

In order to measure software quality Betrand Meyer [53] specifies the following factors:

Correctness is the ability of software products to perform their exact tasks, as defined by
their specifications.

Robustness is the ability of software systems to react appropriately to abnormal condi-
tions.

Extendibility is the ease of adapting software products to changes of specifications.

Reusability is the ability of software elements to serve for the construction of many
different applications.

Compatibility is the ease of combining software elements with others.

Efficiency is the ability of a software system to place as few demands as possible on hard-
ware resources, such as processor time, space occupied in internal and external memories,
bandwidths used in communication devices.

Portability is the ease of transferring software products to various hardware and software
environments.

Ease of use is the ease with which people of various backgrounds and qualifications can
learn to use software products and apply them to solve problems. It also covers the ease
of installation, operation and monitoring.

Functionality is the extent of possibilities provided by a system.

Timeliness is the ability of a software system to be released when or before its users want
it.

Obviously all these definitions are stated rather generally and need to be substantiated for each
concrete type of software. Quality of scientific software was in particular discussed, investigated
and exemplified in [50].

Libraries can be used to extend the scope of programming languages. Thus, the quality of
software packages can benefit from the quality of these libraries. Based on Ulm’s Oberon System2,
techniques and concepts for the design of high quality libraries were demonstrated in [10].

The FLENS library extends the scope of the C++ programming languages for features that
are relevant for scientific computing. The quality of FLENS gets discussed and analyzed in this
work based on the above quality factors.

2.5 FLENS: Previous Releases

The original FLENS library [73] was developed by Alexander Stippler in 2003. The present work
describes its successor that resulted from a complete redesign and re-implementation. While the
scope and intension of these two libraries are different, the original FLENS library had some
essential influence on its successor.

The original FLENS library was mainly intended to build a base for the implementation of
various applications concerning adaptive wavelet methods for solving elliptic partial differential
equations. In this field the implementation of numerical methods requires rather flexible matrix
and vector types. For instance, indices are typically multidimensional, and the sparsity patterns
of matrices and vectors are a priori unknown. This requires quite flexible indexing mechanisms

2http://www.mathematik.uni-ulm.de/oberon/

http://www.mathematik.uni-ulm.de/oberon/
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and index types, as well as sophisticated data structures in order to combine fast element access
and compact storage.

Soon after its release the original FLENS library was not only used for the development
of adaptive wavelet methods, but also applied in other fields of scientific computing (e. g. nu-
merical optimization [69] or numerical finance [91], [61]). A further field of application was
teaching. FLENS was used as a tool for numerical programming in both undergraduate and
graduate courses at Ulm University. However, as the field of applications steadily became wider,
deficiencies of the original FLENS design became apparent. Design issues were related to effi-
ciency, flexibility, extensibility and reusability. Such deficiencies are typical for a first design of
a complex library. Further, for the development of the original FLENS no computer cluster was
available. Therefore parallelization could not be thoroughly considered in the initial design. In
order to resolve these issues a complete redesign and re-implementation became inevitable. For
the relaunch of the FLENS project the experiences made with the original FLENS library were
invaluable and influenced most of its design decisions.

2.6 Related Scientific Libraries

Compared to its original releases the new FLENS library aims to be a much more general and
flexible building block for scientific and high performance computing. In the field of adaptive
wavelet methods it serves as a building block for LAWA (Library for Adaptive Wavelet Appli-
cations) [72] which is now actively developed by Alexander Stippler. LAWA and FLENS were
used in [77] to demonstrate and exemplify adaptive wavelet methods for solving elliptic partial
differential equations.

For the numerical treatment of partial differential equations various libraries exist that are
highly sophisticated. UG [5], DUNE [6] and ALBERTA [66] for instance, provide numerical
methods that are state of the art in this domain. Also serving as a building block for such
libraries in the future was an ambitious aim in the development of FLENS.

In order to serve as an effective building block, the scope of FLENS was designed orthogonal
to that covered by the libraries mentioned above. FLENS solely intends to extend the C++
programming languages for features that are frequently needed in the development of scientific
software. Libraries specialized in a particular field can take advantage of these extensions within
their development process.



3 Low-Level Interface for BLAS
and LAPACK

For any library intended as a serious platform for scientific computing, interfacing with other
external libraries is a highly relevant and essential feature. Such external libraries are often
specialized in treating only certain domain specific problems and can be considered as experts
in this field. This chapter illustrates the low-level interface of FLENS for BLAS and LAPACK,
where the term ‘low-level’ reflects the degree of abstraction realized in the interface. Most of
the issues addressed in this chapter occur in a similar form when interfacing with other external
libraries. This includes the handling of specific data structures or the situation where external
libraries are implemented in programing languages that are different from C++.

BLAS and LAPACK implementations support different formats for storing matrices and
vectors. These formats are commonly denoted as storage schemes. In Section 3.1 some of the
most important storage schemes are introduced. As shown there, many technical details as well
as programming language specific features are relevant for the proper handling and usage of
storage schemes. Outlined in Section 3.2, this motivates the implementation of C++ classes
encapsulating such schemes. Sections 3.3 and 3.4 give a general overview of the functionality
and the usage of BLAS and LAPACK. Further, these sections address the issue of calling Fortran
routines from within C++ programs. The chapter is concluded by a brief discussion on software
quality. This discussion in particular addresses the need for ‘low-level’ interfaces.

3.1 Storage Schemes for Matrices and Vectors

BLAS provides linear algebra routines for different matrix types: triangular, symmetric, her-
mitian and general (i. e. , non-square or unsymmetric). Storage of elements can be organized
following different schemes – in the following denoted as storage schemes. What particular
storage scheme is favorable depends on the matrix structure as well as the numerical methods
operating on the matrix. While in some cases compact storage of a matrix is essential, in others
it is crucial to have fast access to single elements, whole rows or columns or to operate efficiently
on matrix slices.

It is important to point out the difference between storage schemes and matrix types. Each
storage scheme merely defines a certain format specifying how to store matrix elements in mem-
ory. However, the storage scheme itself does not specify a particular matrix type. For illustration
consider the general matrix

A =





a1,1 a1,2 a1,3 0

a2,1 a2,2 a2,3 a2,4

0 a3,2 a3,3 a3,4

0 0 a4,3 a4,4



 .

The very same storage scheme used to store elements of A can be used to represent symmetric,
hermitian or triangular matrices. Referencing only elements from the storage scheme belonging
to either the upper or lower triangular part allows to represent symmetric matrices (elements
actually stored in memory are indicated red):

13
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SU =





a1,1 a1,2 a1,3 0

a1,2 a2,2 a2,3 a2,4

a1,3 a2,3 a3,3 a3,4

0 a2,4 a3,4 a4,4



 and SL =





a1,1 a2,1 0 0

a2,1 a2,2 a3,2 0

0 a3,2 a3,3 a4,3

0 0 a4,3 a4,4



.

Analogously, the scheme can be interpreted to represent upper or lower triangular matrices.
Triangular matrices can further be assumed to be unit triangular such that diagonal elements
are actually not referenced. In connection with the LU decomposition (see Section 3.4.1) it is in
particular useful to interpret the storage scheme of a general matrix also as

U =





a1,1 a1,2 a1,3 0

0 a2,2 a2,3 a2,4

0 0 a3,3 a3,4

0 0 0 a4,4



 or L =





1 0 0 0

a2,1 1 0 0

0 a3,2 1 0

0 0 a4,3 1



.

Recapitulating and simplifying one can note that — in the sense of BLAS and LAPACK —
matrix types are compositions of storage schemes together with some additional informations
specifying how to interpret these schemes.

With respect to software quality such a loose coupling between storage scheme and matrix
type is not optimal. In Chapter 4 matrix and vector classes will be introduced to firmly link
these ideas together.

3.1.1 Memory Layout of Arrays in C and Fortran

The memory layouts of multidimensional arrays of C++ and Fortran differ. This difference
is important for any C/C++ library interfacing with Fortran libraries. This is because data
structures are passed via pointers from the C/C++ library to Fortran routines. Hence, data
structures setup within the C/C++ library have to comply to the memory layout expected by
Fortran. In the following these differences in the memory layout are illustrated in more detail.

In C (and therefore also in C++) the memory layout of multidimensional arrays is deliber-
ately1 reflected by the syntax used for the declaration of arrays and the notation for element
access (see Table 3.1). The underlying concept is commonly known as the K&R method2 of
reducing arrays to pointers.

declaration element access of ai,j

C float a[m][n] a[i-1][j-1]

Fortran REAL a(m,n) a(i,j)

Table 3.1: Syntax for arrays in C and Fortran.

An n-dimensional array is a one-dimensional array containing elements that are (n−1)-dimensional
arrays. Further an array is treated as a pointer to the first element and the notation a[i] is
equivalent to *(a+i) dereferencing an address computed by address arithmetic. As this implies
that *a = a[0] refers to the first element, the indices of C arrays must be zero-based.

For matrices the most important consequence is their row-wise storage in two-dimensional C
arrays. This is best illustrated by considering storage of a matrix A ∈ R

m×n in a two-dimensional
C array a[m][n]. The element ai,j with 1 ≤ i ≤ m, 1 ≤ j ≤ n gets stored in a[i-1][j-1]. As
the first index refers to a row it is evident that a[i-1] points to the first element of the i-th
row. Figure 3.1 depicts the memory layout of a dynamically allocated two-dimensional array a

storing A ∈ R
3×4. In this case the array is, e. g. , of type float **a and a is a pointer to an

array containing pointers to the rows of A.

1This might have been one reason for C to become a preferred language for system programming.
2referring to Brian W. Kernighan und Dennis M. Ritchie
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a a[0] a[1] a[2]

a[0][0] a[0][1] a[0][2] a[0][3] a[1][0] a[1][1] a[1][2] a[1][3] a[2][0] a[2][1] a[2][2] a[2][3]

a1,1 a1,2 a1,3 a1,4 a2,1 a2,2 a2,3 a2,4 a3,1 a3,2 a3,3 a3,4

Figure 3.1: Memory layout of a dynamically allocated, two-dimensional array in C.

Fortran’s syntax for arrays is more aligned to the mathematical notation. By default, Fortran
arrays are indexed with base one. Opposed to C, in Fortran3 matrices are internally stored
column-wise. The same memory layout can be achieved with C by swapping the meaning of
the indices, i. e. the first index referring to columns, the second to rows. This simply means
that storage of a matrix A in a two-dimensional Fortran array equals storage of AT in a two-
dimensional C array. Figure 3.2 shows how to dynamically allocate a two-dimensional array in
C in order to achieve a compatible memory layout for Fortran.

a a[0] a[1] a[2] a[3]

a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2] a[2][0] a[2][1] a[2][2] a[3][0] a[3][1] a[3][2]

a1,1 a2,1 a3,1 a1,2 a2,2 a3,2 a1,3 a2,3 a3,3 a1,4 a2,4 a3,4

Figure 3.2: Achieving a Fortran compatible memory layout with C.

3.1.2 Arrays with Arbitrary Index Base

For the implementation of numerical algorithms the fact that C arrays are zero based can become
inconvenient and therefore lead to an error prone code. Using dynamically allocated arrays allows
the realization of arbitrary index bases. Figure 3.3 shows how to store A ∈ R

3×4 row-wise in a
two-dimensional array a such that row and column indices — to be precise valid indices — start
at one. Compared to Figure 3.1 pointers are shifted by ‘−1’. Obviously this can be generalized
to achieve arbitrary index ranges, however in a realization without special precautions this may
easily lead to error prone code. Moreover, typical errors resulting from ‘out of range’ indices are
extremely hard to debug.

The gathered knowledge about arrays now allows one to introduce the storage schemes used
in BLAS and LAPACK and to illustrate how to set up corresponding structures in C. This in turn
will be the base for a solid design and implementation of C++ classes realizing these schemes.

3In Fortran — which is older than C — column-wise storage is merely a standardized convention. For C the
storage order is a inherent consequence of the K&R method.
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a a[0] a[1] a[2] a[3]

a[1][0] a[1][1] a[1][2] a[1][3] a[1][4] a[2][1] a[2][2] a[2][3] a[2][4] a[3][1] a[3][2] a[3][3] a[3][4]

a1,1 a1,2 a1,3 a1,4 a2,1 a2,2 a2,3 a2,4 a3,1 a3,2 a3,3 a3,4

Figure 3.3: Two-dimensional C array with index base one.

x

y

x[0]

x0

x[1]

x1

x[2]

x2

x[3]

x3

x[4]

x4

x[5]

x5

x[6]

x6

x[7]

x7

x[8]

x8

x[9]

x9

y0 y1 y2 y3 y4

stride 2

C/C++ Code:

double x[10];

double *y = x+1;

int strideY = 2;

int lengthY = 5;

Figure 3.4: Vector and Vector View.

3.1.3 Vector Storage Scheme

Vector elements are stored linearly in memory separated from each other by a constant stride.
Using a one-dimensional array results in a contiguous storage where the stride equals one. Strides
different from one naturally arise when dealing with vector slices. Hereby a vector slice is
determined by three pieces of information: a pointer to the first element, length of the slice
and the stride between its elements. Figure 3.4 illustrates an example where x is a contiguously
stored vector of length 10 and y refers to a slice of x referencing every second element. The i-th
element of y gets dereferenced by y[i*stride] for 0 ≤ i < 5 = lengthY.

FLENS adopted the term view from database systems to refer to slices. This terminology
reflects that a slice is not copied and stored in extra allocated memory. Instead, slices directly
refer to parts of another vector and changing elements of the slice changes elements in the
‘original’ vector. The same terminology is used for matrix slices.

3.1.4 Full Storage Scheme

In the full storage scheme, all m · n elements of a m× n matrix are stored in a two-dimensional
array. The storage is said to be row major or column major if elements are stored row or column
wise respectively. Using shifted pointers, an implementation can provide arbitrary index bases
for rows and columns.

Full storage allows one to operate on matrix views that are sub-matrix blocks. Hereby the
term ‘block’ refers to sub-matrices of form B = (ai,j) with i0 ≤ i ≤ i1 and j0 ≤ j ≤ j1. For
this purpose four pieces of information are needed: a pointer b to the first element (ai0,j0), the
number of rows and columns of the view (that is i1−i0+1 and j1−j0+1 respectively) and further
the so called leading dimension. In a row major storage, the leading dimension denotes the stride
between column elements, and for column major storage the stride between row elements.

Obviously the leading dimension is given by the dimensions of the original matrix. In a row
major storage, the leading dimension equals the number of columns, and analogously in a column
major storage, the number of rows. Figure 3.5 illustrates this concept for a 2× 3 matrix view B
referencing a block within a 3× 4 matrix A.
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a a[0] a[1] a[2]

leading dim. = 4

a[0][0] a[0][1] a[0][2] a[0][3] a[1][0] a[1][1] a[1][2] a[1][3] a[2][0] a[2][1] a[2][2] a[2][3]

a1,1 a1,2 a1,3 a1,4 a2,1 a2,2 a2,3 a2,4 a3,1 a3,2 a3,3 a3,4

b

Figure 3.5: Matrix view of a row major full storage scheme.

Accessing elements of B requires some pointer arithmetic as summarized in Table 3.2. Due
to the additional integer operations element access for views is considerably slower as compared
to ‘non-views’. If fast element access is relevant, setting up an additional array with pointers to

storage order Bi,j leading dimension (ld)

column major b[j*ld+i] row element stride

row major b[i*ld+j] column element stride

Table 3.2: Element access for full storage schemes

rows of the view (or columns in column major schemes) may pay off.

As can be seen in Figure 3.5, elements of matrix views are in general not contiguously in
memory. However some numerical libraries (e. g. FFTW [30]) explicitly rely on this.

3.1.5 Band Storage Scheme

The band storage format intends to store a m×n matrix A with kl sub-diagonals and ku super-
diagonals4 compactly in a two-dimensional array ab:

1. Columns of A are stored in columns of ab and

2. diagonals of A in rows of ab. More precisely, the first row of ab stores the highest super-
diagonal of A.

BLAS and LAPACK functions require that ab is stored in column major order. In general, array
ab will contain a few additional dummy elements (as indicated by ‘∗’):

A =





a1,1 a1,2 0 0

a2,1 a2,2 a2,3 0

0 a3,2 a3,3 a3,4

0 0 a4,3 a4,4

0 0 0 a5,4




, ab(Col. Major):

∗ a1,2 a2,3 a3,4

a1,1 a2,2 a3,3 a4,4

a2,1 a3,2 a4,3 a5,4

The above two rules define the column major band storage scheme for A. Recalling that row
major storage of A has to be equivalent to column major storage of AT it follows that:

4only kl, ku ≥ 0 is supported in BLAS and LAPACK.
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ab(Row Major):

∗ a2,1 a3,2 a4,3 a5,4

a1,1 a2,2 a3,3 a4,4 ∗
a1,2 a2,3 a3,4 ∗ ∗

For an implementation of the band storage scheme it is favorable to use for ab an implementation
of the full storage scheme with arbitrary index ranges:

Dimensions of ab row indices of ab column indices of ab aij

col. major (ku + kl + 1)× n −ku, . . . , kl = col. indices of A ab(i-j,j)

row major (ku + kl + 1)×m −kl, . . . , ku = row indices of A ab(j-i,i)

The band storage format allows one to support matrix views referencing a subset of adjacent
bands in the original matrix. A banded sub-matrix B of A with k̃l sub-diagonals and k̃u super-
diagonals where kl ≤ k̃l ≤ k̃u ≤ ku can be realized through appropriate views of ab. Hereby views
of ab reference whole rows. In column major ordering these are rows with indices −k̃u, . . . , k̃l,
whereas in row major ordering −k̃l, . . . , k̃u.

3.1.6 Packed Storage Scheme

Triangular, symmetric and hermitian matrices can be stored most compactly using the packed
storage scheme. Either the upper or lower triangular part of the matrix gets stored. Elements
are stored contiguously — either row or column wise — in a one-dimensional vector ap:

A =




a1,1 a1,2 a1,3

0 a2,2 a2,3

0 0 a3,3



,
ap(Row Major): a1,1 a1,2 a1,3 a2,2 a2,3 a3,3

ap(Col. Major): a1,1 a1,2 a2,2 a1,3 a2,3 a3,3

Formulas for element access depend on whether the upper or lower triangular part of A is stored
in ap as well as the storage order. If row and column indices of A start at zero then using for ab
a vector with index base zero leads to the following formulas:

storage order triangular part ai,j stored in

row major upper ap(j + i(2n− i− 1)/2)

row major lower ap(j + i(i + 1)/2)

col. major upper ap(i + j(j + 1)/2)

col. major lower ap(i + j(2n− j − 1)/2)

For row and column indices starting at i0 and j0 respectively replace i with i−i0 and j with j−j0.
Due to the required integer arithmetic arbitrary element is relatively slow. However consecutive
element access as required for a triangular solver (i. e. solving a system of linear equations where
the coefficient matrix is triangular) is fast.

3.2 Realization of Storage Schemes in C++

Implementing classes for storage schemes makes it a lot easier to use BLAS or LAPACK func-
tions. Testing these classes thoroughly assures correct memory allocation and element access.
In debug mode, methods for element access can check index ranges. In conjunction with sup-
port for arbitrary index ranges, correct allocation as well as index checks are essential to ensure
correctness. In general, supporting vector or matrix views also requires some sort of memory
management. To be more precise, if different objects share some dynamically allocated block of
memory, it has to be guaranteed that this memory block gets deallocated by the last referencing
object.
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3.2.1 Vector Storage: class Array

Beside the vector length and index base the Array class encapsulates a pointer to the allocated
memory5:

1 template <typename T>

2 class Array

3 {

4 public :

5 Array ();

6

7 Array (int length , int firstIndex =1);

8

9 // ...

10

11 private :

12 int _length , _firstIndex ;

13 T *_data ;

14 };

Elements are stored contiguously in memory. The pointer is shifted such that data[ firstIndex]

references the first element:

_data = static_cast <T *>( calloc (length , sizeof (T))) - _firstIndex ;

assert (_data+ _firstIndex );

In a more general implementation additional template parameters for the Array class can serve
to treat allocation of memory more flexibly: E. g. using malloc or memalign instead of calloc
or other implementations for dynamic memory allocation.

Only in debug mode, index ranges are checked for element access such that in non-debug
mode there is no overhead compared to ordinary C arrays:

1 template <typename T>

2 T &

3 Array <T>:: operator ()( int index)

4 {

5 assert (index >= _firstIndex );

6 assert (index <_firstIndex +_length );

7

8 return _data [index ];

9 }

Methods to retrieve vector length, stride between elements as well as a pointer to the first vector
element can be used for calling BLAS and LAPACK functions (see Section 3.3):

1 template <typename T>

2 class Array

3 {

4 public :

5

6 int length () const;

7

8 int stride () const;

9

10 const T *data () const;

11 {

12 return &_data [_firstIndex ];

13 }

14

15 T *data ();

16

17 // ...

18 };

5Names of private variables have a preceding ‘ ’ by the FLENS coding style convention.



20 3 Low-Level Interface for BLAS and LAPACK

3.2.2 Vector Storage and Views: class ArrayView and ConstArrayView

The Array class further provides methods for the creation of views. These views are either of
type ArrayView or ConstArrayView depending on whether a view gets created from within a
non-const or const context:

1 template <typename T>

2 class Array

3 {

4 public :

5

6 ConstArrayView <T>

7 view(int from , int to , int stride =1, int firstViewIndex=1) const;

8

9 ArrayView <T>

10 view(int from , int to , int stride =1, int firstViewIndex=1);

11

12 // ...

13 };

The view objects created will reference those elements of the original array indexed there by from,

from + stride, from + 2*stride,..., to. The stride can neither be zero nor negative as
this is not supported by most BLAS implementations. The index base of the array view is
firstViewIndex and can differ from the index base used in the original array. ArrayView

provides the same interface, i. e. the same methods, as class Array. While ConstArrayView —
to ensure const correctness — defines only the const methods of the Array interface, such that
underlying data can not be modified.

As was shown in Subsection 3.1.3 ArrayView and ConstArrayView objects have to store the
length of the array view, its index base, the stride between elements and a (shifted) pointer to
access the first element of the view. The address of the memory block allocated by the original
Array object is stored in pointer storage:

1 template <typename T>

2 class ArrayView

3 {

4 // ...

5

6 private :

7 void *_storage ;

8 T *_data;

9 int _length , _stride , _firstIndex ;

10 };

The reference counter for storage gets incremented during the construction of view objects, as
here for ArrayView objects:

1 template <typename T>

2 ArrayView <T>:: ArrayView (void *storage , T *data ,

3 int length , int stride , int firstIndex )

4 : _storage (storage ), _data(data),

5 // ...

6 {

7 RefCounter :: attach (_storage );

8 }

Class RefCounter is internal part of FLENS an provides a simple reference counting imple-
mentation. Method RefCounter::attach(addr) increments and RefCounter::detach(addr)

decrements a reference counter for address addr. detach returns true if no further object in-
stance exists using the underlying address. Whether the destructor of the array view releases
memory depends on the reference counter:

1 template <typename T>

2 ArrayView <T >::~ ArrayView ()

3 {
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4 if (RefCounter :: detach (_storage )) {

5 free(_storage );

6 }

7 }

Note that the ConstArrayView must not deallocate memory as this would violate const correct-
ness. Instead an assertion gets triggered such that in debug mode it will be tested to ensure
that the last referencing object is not a const view object. The destructor of the Array class is
implemented analogously to ArrayView but can use the data() method to get a pointer to the
allocated memory block:

1 template <typename T>

2 Array <T >::~ Array ()

3 {

4 if (RefCounter :: detach (data ())) {

5 free(data ());

6 }

7 }

The implementation of reference counting used here is kept very simple. This is sufficient as no
recursive dependencies can occur. Much more sophisticated techniques like garbage collection
[42] are integral parts of some other programming languages and for this reason make memory
management there much safer. Further, using the user-defined reference counting strategy only
across three (not too complex) classes — combined with some test cases — gives a fair chance
to ensure a correct implementation.

Note that accessing elements of an array view requires pointer arithmetic and can imply a
considerable run-time overhead:

1 template <typename T>

2 T &

3 ArrayView <T >:: operator ()( int index )

4 {

5 assert (index >= _firstIndex );

6 assert (index <_firstIndex +_length );

7

8 return _data [_firstIndex + _stride *(index -_firstIndex )];

9 }

3.2.3 Interface of Vector Storage Schemes

Classes Array, ArrayView and ConstArrayView do not have a common base class but instead
are only related by meeting certain interface conventions. Such a convention is most relevant for
generic programming. The interface of the vector storage schemes loosely can be grouped into
categories6:

1. Initialization, element access and changing vector size/index base:

int
First valid index.

firstIndex() const;

int
Last valid index.

lastIndex() const;

const T&
Element access.
Debug mode: Checks for valid
indices.

operator()(int index) const;

T&

operator()(int index);

6ConstArrayView only provides the const methods as mentioned above.
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void Changing array size or index
base. Previously stored data
will not be copied!

resize(int length,

int firstIndex=1);

2. Creation of views: View objects can be used like regular arrays. However, no additional
memory gets allocated. Instead view objects merely reference elements of a previously
allocated array. The index bases of the original array and its views can differ.

ConstArrayView<T> Creates a view referencing
elements of the original array
indexed by from, from+stride,

from+2*stride,...,to.
The index base of the view is
firstViewIndex.

view(int from, int to, int stride=1,

int firstViewIndex=1) const;

ArrayView<T>

view(int from, int to, int stride=1,

int firstViewIndex=1);

3. Access to internal data structures: in particular these methods are suited for calling BLAS
and LAPACK functions (see Section 3.3 and 3.4).

int
Length of array.

length() const;

int Stride in memory between array
elements.stride() const;

const T *

Pointer to the first element in
the array.

data() const;

T *

data();

4. Constructors and assignment operators: Instead of listing the signatures these are best
documented by depicting functionality and providing examples of their usage. Class Array
provides constructors for the creation of array objects of a particular size (including size
zero) and index base (by default 1):

Array <double > x, // length 0 (no memory allocated ),

y(5), // length 5, index base 1

z(5 ,0); // length 5, index base 0

Objects of type ArrayView can only be created from Array objects by calling one of its
view(..) methods7. The creation of view objects that are not ‘linked’ with any Array

object is not allowed:

ArrayView <double > a; // error

ArrayView <double > b = y.view (1 ,3); // ok , refers to y(1), y(2), y(3)

Arrays can be copied using the assignment operator. In an assignment the left hand side
gets automatically resized if necessary and possible. Hereby ‘necessary’ means that the left
and right hand side arrays are of different lengths. Whereas ‘possible’ refers to the fact
that array views can not be resized. Note that if the left and right hand sides are of equal
length but use different index bases there will be no resizing and in particular the index
bases are not changed. However, if resizing is performed the left hand side will also adapt
the index base of the right hand side:

7The view methods internally use a constructor of the ArrayView class not intended for public usage
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x = y; // resize x: new length is 5, index base 1.

// -> x(1) = y(1), x(2) = y(2), ...

z = y; // no resize

// -> z(0) = y(1), z(1) = y(2), ...

b = y; // error: can not resize b to length 5

x = b; // ok , resize x: new length 3, index base 1

// -> x(1) = b(1) [ = y(1) ],

// x(2) = b(2) [ = y(2) ],

// x(3) = b(3) [ = y(3) ]

Note that during an assignment there is no check for overlapping views. This is mainly due
to performance reasons. Without caution of the user this can lead to unexpected results
(see discussion in Section 3.2.7):

ArrayView <double > v1 = y.view (1 ,3); // refers to y(1), y(2), y(3)

ArrayView <double > v2 = y.view (3 ,5); // refers to y(3), y(4), y(5)

v2 = v1; // y(3) = y(1),

// y(4) = y(2),

// -> y(5) = y(3) [ = y(1) ]

5. Public typedefs and traits: For generic programming a well-defined set of typedefs and
traits is essential. Consider a template function to find and return the absolute largest
value of an array. The fact that all array classes provide a typedef ElementType for the
element type allows the generic implementation:

1 template <typename ARRAY >

2 typename ARRAY :: ElementType

3 max(ARRAY &x)

4 {

5 // find and return max. value of x

6 }

The array x can be of type Array, ArrayView or ConstArrayView.

Typedefs View and ConstView define the type of views returned by the view methods.
Typedef NoView defines the type of a regular array using its own memory. This is required
for using views in generic programming:

1 template <typename ARRAY >

2 typename ARRAY :: ElementType

3 dummy(ARRAY &x)

4 {

5 typename ARRAY ::View v1 = x.view (1 ,3);

6 typename ARRAY :: ConstView v2 = x.view (1 ,3);

7 typename ARRAY :: NoView y = x.view (1 ,3);

8 }

While v1 and v2 reference slices of x array y contains its own copy thereof. Note that in
this example x can either be of type Array or ArrayView. If x was of type ConstArrayView
then creation of view v1 would violate const-correctness. Such an attempt would result (as
expected and intended) in a compile time error as an ArrayView can be converted into a
ConstArrayView but not vice versa.

If typedefs are not suitable then trait classes can be defined to retrieve type information
about template parameters at compile time. While this is not needed for the array classes
implementations of other schemes as described in the next sections make use of traits.

3.2.4 Full Storage: C++ Interface and Implementation Notes

Template class FullStorage implements the full storage scheme described in Section 3.1.4. Be-
side a template parameter specifying the element type a second parameter defines the ordering
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of elements, which can be either row or column major. The later template parameter has to be
the value of enumeration type

enum StorageOrder {

RowMajor ,

ColMajor

};

declared inside the FLENS library. Objects of type FullStorage store the number of rows and
columns, the index bases for rows and columns as well as a pointer to the stored elements:

1 template <typename T, StorageOrder Order >

2 class FullStorage

3 {

4 public :

5 FullStorage ();

6

7 FullStorage (int numRows , int numCols ,

8 int firstRow =1,

9 int firstCol =1);

10 // ...

11

12 private :

13 int _numRows , _numCols , _firstRow , _firstCol ;

14 T ** _data ;

15 };

Memory gets allocated dynamically during construction of the object. Elements are stored in a
two-dimensional array as motivated and described in Section 3.1.4. The following code segment
exemplifies allocation for column major ordering using shifted pointers to achieve general index
bases:

1 if (Order == ColMajor ) {

2 _data = static_cast <T **>( calloc (_numCols , sizeof (T *))) - _firstCol ;

3 assert (_data+_firstCol );

4

5 _data [_firstCol ] = static_cast <T *>( calloc (_numCols *_numRows ,sizeof (T)))

6 - _firstRow ;

7 assert (_data[_firstCol ]+ _firstRow );

8

9 for (int i=1; i<_numCols ; ++i) {

10 _data[_firstCol +i] = _data[ _firstCol ] + i*_numRows ;

11 }

12 }

Views are supported through template classes FullStorageView and ConstFullStorageView.
As was the case for arrays these view classes also need to store a pointer to the original data,
which is required for reference counting. In addition the leading dimension has to be stored as
was shown in Section 3.1.4:

1 template <typename T, StorageOrder Order >

2 class FullStorageView

3 {

4 // ...

5 private :

6 void *_storage ;

7 T ** _data ;

8 int _numRows , _numCols ;

9 int _leadingDimension;

10 int _firstRow , _firstCol ;

11};

The interface for the packed storage scheme is documented in Appendix A.1.
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3.2.5 Band Storage: C++ Interface and Implementation Notes

Template class BandStorage implements the band storage scheme. As was shown in Section 3.1.5
an implementation of this scheme can use a full storage scheme to store bands of the matrix.
Hereby one can take advantage of the flexible implementations provided for the full storage
scheme.

Template parameters for BandStorage specify the element type and the storage ordering.
The index base for rows and columns has to be the same. Matrix dimensions and index base
are stored explicitly in BandStorage objects. The number of sub- and super-diagonals can be
retrieved implicitly from the FullStorage object storing the matrix elements:

1 template <typename T, StorageOrder Order >

2 class BandStorage

3 {

4 public :

5 BandStorage ();

6

7 BandStorage (int numRows , int numCols ,

8 int numSubDiags , int numSuperDiags ,

9 int indexBase =1);

10

11 // ...

12

13 private :

14 int _numRows , _numCols , _indexBase ;

15 FullStorage <T, ColMajor > _data;

16 };

In numerical applications referencing single diagonals or multiple adjacent diagonals can be of
interest. Diagonals can be referenced through array views as introduced in Section 3.2.2. For
referencing adjacent bands the view classes BandStorageView and ConstBandStorageView are
provided. In contrast to class BandStorage these classes use classes FullStorageView and
ConstFullStorageView respectively. This means that for band storage schemes all tasks related
to views — in particular tedious and possibly error prone issues like reference counting — can
be delegated to a few, well-tested classes.

The interface for the band storage scheme is documented in Appendix A.2.

3.2.6 Packed Storage: C++ Interface and Implementation Notes

Beside element type and storage order template class PackedStorage requires a parameter to
specify whether the upper or lower part of a matrix gets stored. For this reason FLENS declares
the enumeration type

enum StorageUpLo {

Upper ,

Lower

};

According to the storage order, elements are stored contiguously in a one-dimensional array as
described in Section 3.1.6. Index bases for rows and columns have to be the same and the matrix
has to be square (hence dim specifies the number of rows and columns):

1 template <typename T, StorageOrder Order , StorageUpLo UpLo >

2 class PackedStorage

3 {

4 public :

5 PackedStorage();

6

7 PackedStorage(int dim , int indexBase =1);

8

9 // ...

10

11 private :
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12 int _dim , _indexBase ;

13 Array <T> _data;

14 };

Views are not supported for the packed storage scheme.
The interface for the packed storage scheme is documented in Appendix A.3.

3.2.7 Discussion: Software Quality of Storage Scheme Classes

In the following, the classes outlined in this section are briefly analyzed with respect to software
quality. The most relevant impact is related to the following software quality factors:

1. Correctness/Ease of use: As was shown, allocation of storage schemes and memory
management for views require one to incorporate very specific and technical details. Even
worse, software bugs in this respect are typically hard to debug. Encapsulating storage
schemes in classes does not only improve the ease of use, but also has a positive impact on
correctness. Bundling all technical, low-level code in only a small number of classes allows
specific and targeted testing. As a result, storage classes can be used as reliable building
blocks.

In Section 3.2.3 it was shown that ‘overlapping views’ can lead to unexpected results. While
it would be possible to treat such cases in debug mode this is not realized in FLENS. This
is due to the fact that such a check would imply a considerable runtime overhead in debug
mode. But keeping the runtime overhead of the debug mode reasonable is a key requirement
to ensure that this mode will be used in practice. One possible way out would be to allow
different debug levels in the future.

2. Efficiency/Robustness: With respect to views a certain runtime overhead is induced due
to reference counting. In most numerical applications it is not required that the lifetime
of view objects can exceed the original object. At least it can be avoided rather easily.
If runtime overhead due to the creation and destruction of views should become relevant
one could consider the following policy: Only in debug mode checks ensure that actually
no view object lives longer than its creator. This checks use the current mechanism for
reference counting. While in non-debug mode all code related to reference counting would
be omitted.

View classes for the full storage scheme induce a further runtime overhead. This is because
during instantiation an array with pointers to either rows or columns gets setup. If random
access of elements is relevant for views this pays off. But still there might be cases where
this overhead could be undesirable.

Whether quality requirements are fulfilled sufficiently depends on how the single factors are
weighted. Furthermore, the weighting in general will vary between different types of application.
This makes it obvious that a single implementation can never be considered as optimal.

This suggests to provide different implementations of a certain storage scheme. Each of these
implementations can then be realized following a different efficiency policy. If all implementations
comply to the same interface, these implementations are exchangeable. Obviously this is of great
practical importance. While developing a scientific software, this allows using initially a default
implementation. Once the correctness of the software is guaranteed, the implementation can be
replaced with a specifically tuned version. In turn, the time required to ensure the correctness
can be reduced by providing different implementations, realizing different levels of checks in
debug mode.

3.3 BLAS Routines and their Embedding into C++

FLENS uses CBLAS a standardized C interface to BLAS. While BLAS itself only supports
column major ordering, CBLAS does also support row major ordering. This section gives only
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a brief overview about the functionality provided by BLAS. A detailed documentation of BLAS
and CBLAS can be found in [14] and a quick reference guide in [60].

3.3.1 Naming Conventions for Functions in BLAS and CBLAS

Names of CBLAS functions are related to correspondent BLAS routines as follows: the name of a
CBLAS function is prefixed with cblas followed by the name of the BLAS function in lowercase
letters. For example, the CBLAS function cblas dgemv interfaces with the BLAS routine DGEMV.

Following a strict naming convention the name of a BLAS routine encodes further information.
The first letter represents the data type:

C type C++ type

s single precision (float) float

d double precision (double) double

c single precision complex complex<float>

(real and imaginary part of type float)

z double precision complex complex<double>

(real and imaginary part of type double)

Note that ANSI/ISO C does not specify complex data types. CBLAS expects that real and
imaginary parts of a complex number are stored in consecutive memory locations. This conforms
to the implementation of the STL class complex<T>.

For BLAS routines operating on matrices the next two letters indicate the matrix argument
type8:

Full Storage Band Storage Packed Storage

General ge gb -

Symmetric sy sb sp

Hermitian he hb hp

Triangular tr tb tp

To be more precise, these two letters indicate how functions interpret a particular storage scheme.
An ‘sb-function’ will treat a band storage scheme as a symmetric matrix (typically this function
then will only access either the upper or lower part of the scheme). While a ‘gb-function’ would
treat the same scheme as a general matrix with band structure.

Remaining letters depict the operation performed. For instance mv stands for matrix-vector
product and mm for matrix-matrix product. Consequently the CBLAS routine cblas dgemv im-
plements the matrix-vector product for a general matrix with full storage and elements of double
precision.

Depending on the operations performed BLAS can be grouped into three levels. In the
following these levels are further considered.

3.3.2 Level 1 BLAS

Level 1 BLAS provides vector-vector and scalar-vector operations. Letters s, d, c, z specifying
the element type are only indicated by X:

operation mathematical notation CBLAS function

vector norms nrm2← ||x||2 cblas Xnrm2

asum← ||re(x)||1 + ||im(x)||1 cblas Xasum

amax← max(|re(xi)|+ |im(xi)|) cblas Xamax

8For routines that expect more than one matrix these letters indicate the most significant matrix type
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dot product dot← xT y cblas Xdot

dot← xHy cblas Xdotc

vector assignment y ← x cblas Xcopy

vector scaling x← αx cblas Xscal

scaled vector addition y ← αx + y cblas Xaxpy

An expression like z = αx + βy can be evaluated by

z ← x (cblas Xcopy)

z ← αz (cblas Xscale)

z ← βy + z (cblas Xaxpy)

Characteristic for the interface of all these functions is how vectors are passed. One has to pass
the vector length, the stride between elements and a pointer to the first element. For example,
the signature of cblas Xcopy is

1 void

2 cblas_dcopy (const int N, // vector length

3 const double *X, // pointer to first element of x

4 const int incX , // stride between elements of x

5 double *Y, // pointer to first element of y

6 const int incY); // stride between elements of y

This works seamlessly with the array classes introduced in Section 3.2.3. Such that the assign-
ment y = x can be implemented like this:

1 // debug mode: check x.length () == y.length ()

2 cblas_dcopy (x.length (), x.data(), x.stride (),

3 y.data(), y.stride ());

3.3.3 Level 2 BLAS: Matrix-Vector Operations

Matrix-vector operations specified by Level 2 BLAS involve matrix-vector products, triangular
solve (forward-/backward substitution) as well as rank one and two updates. In the following
op(A) can denote A, AT or AH :

operation mathematical notation CBLAS function

matrix-vector products y ← αop(A)x + βy cblas X{gemv, gbmv}
y ← αAx + βy cblas X{hemv, hbmv, hpmv}
y ← αAx + βy cblas X{semv, sbmv, spmv}
x← op(A)x cblas X{trmv, tbmv, tpmv}

triangular solve x← A−1x

x← A−T x cblas X{trsv, tbsv, tpsv}
x← A−Hx

rank one update A← αxyT + A cblas Xger

symmetric (A = AT ) A← αxxT + A cblas Xsyr

rank one and two updates A← αxyT + yxT + A cblas Xsyr2

. . . . . . . . .

CBLAS defines the enumeration type

enum CBLAS_ORDER {CblasRowMajor , CblasColMajor};

to specify storage ordering. As was already noted in Section 3.1 in order to associate a storage
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scheme with a specific matrix type additional information is required. Such information gets
encoded based on further enumeration types. For symmetric, hermitian and triangular matrices
enumeration type

enum CBLAS_UPLO {CblasUpper , CblasLower };

is used to declare that matrix elements are stored in either the upper or lower triangular part of
the scheme. For triangular matrices the enumeration type

enum CBLAS_DIAG {CblasUnit , CblasNonUnit};

allows one to specify whether the matrix is unit or non-unit triangular respectively. If a triangular
matrix is supposed to be unit triangular then diagonal elements from the storage scheme will
not be referenced by CBLAS functions.
Further op(A) can be defined as either A, AT or AH through

enum CBLAS_TRANSPOSE {CblasNoTrans , CblasTrans , CblasConjTrans};

Functionality and usage of Level 2 BLAS functions can be illustrated quite comprehensively for
function cblas dtbmv. It allows one to compute either x← Ax or x← AT x where A is a banded
triangular matrix. Because A is triangular, elements of vector x can be overwritten successively
with the result of the matrix-vector product. The C++ interfaces for the band storage and
vector storage schemes allow one to provide all further argument parameters for cblas dtbmv:

1 // matrix -vector product : x = op(A)*x

2 void

3 cblas_dtbmv (const enum CBLAS_ORDER Order , // storage order

4 const enum CBLAS_UPLO upLo , // access upper or lower part

5 const enum CBLAS_TRANSPOSE transA , // op(A) = A or A^T

6 const enum CBLAS_DIAG diag , // unit - or non -unit diagonal

7 const int n, // matrix dimension

8 const int k, // total number of diagonals

9 const double *A, // pointer to matrix elements

10 const int lda , // leading dimension

11 double *x, // pointer to vector elements

12 const int incX); // stride in vector x

Also note that the vector length of x is assumed to equal the dimension of A.

3.3.4 Level 3 BLAS: Matrix-Matrix Operations

Level 3 BLAS provides functions for matrix-matrix products, symmetric rank k and 2k updates
and triangular solve for multiple right hand sides. Only matrices with full storage are supported:

operation mathematical notation CBLAS function

matrix-matrix product C ← αop(A)op(B) + βC cblas X{gemm, symm, hemm}
symmetric (A = AT ) C ← αAAT + βC

rank k and 2k updates C ← αAT A + βC cblas Xsyrk

C ← αABT + ᾱBAT + C

C ← αAT B + ᾱBT A + C cblas Xsyr2k

hermitian (A = AH) C ← αAAT + βC

rank one and two updates C ← αAT A + βC cblas Xherk

C ← αxABH + ᾱBAH + C

C ← αxAHB + ᾱBHA + C cblas Xher2k

Interface for cblas dgemm computing C ← αop(A)op(B) + βC:

1 void

2 cblas_dgemm (const enum CBLAS_ORDER Order , // storage order

3 const enum CBLAS_TRANSPOSE transA , // op(A) = A or A^T

4 const enum CBLAS_TRANSPOSE transB , // op(B) = B or B^T
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5 const int m, // number of rows in C

6 const int n, // number of columns in C

7 const int k, // number of columns of op(A)

8 const double alpha , // scalar alpha

9 const double *A, // pointer to matrix elements

10 const int lda , // leading dim. of A

11 const double *B, // pointer to matrix elements

12 const int ldb , // leading dim. of B

13 const double beta , // scalar beta

14 double *C, // pointer to matrix elements

15 const int ldc ); // leading dim. of C

Note that the number of columns in op(A) has to equal the number of rows in op(B).

3.3.5 C++ Interface for BLAS

FLENS provides for each CBLAS function a corresponding C++ wrapper function. One purpose
of these C++ wrapper functions is to map FLENS enumeration types onto CBLAS enumeration
types:

1 void

2 tbmv(StorageOrder Order , StorageUpLo UpLo , Transpose Trans , UnitDiag Diag ,

3 int n, int k, const double *A, const int lda , double *X, int incX)

4 {

5 CBLAS_ORDER order = (Order == RowMajor ) ? CblasRowMajor : CblasColMajor;

6 CBLAS_UPLO upLo = (UpLo== Upper) ? CblasUpper : CblasLower ;

7 CBLAS_TRANSPOSE trans = (Trans == NoTrans ) ? CblasNoTrans : CblasTrans ;

8 CBLAS_DIAG diag = (Diag== NonUnit ) ? CblasNonUnit : CblasUnit ;

9

10 cblas_dtbmv (order , upLo , trans , diag , n, k, A, lda , X, incX );

11 }

A prefix analogously to cblas can be omitted as these functions are defined inside namespace

flens. Further the wrapper functions are overloaded with respect to the element type:

1 void

2 tbmv(StorageOrder Order , StorageUpLo UpLo , Transpose Trans , UnitDiag Diag ,

3 int n, int k, const float *A, const int lda , float *X, int incX)

4 {

5 // call cblas_stbmv

6 }

Hence also a prefix specifying the element type can be left out.
Usage of BLAS can now be handled more flexibly. In the following example function example bs

performs two matrix-vector multiplications (interpreting a band storage scheme first as upper
triangular then as lower unit triangular matrix):

1 template <typename BS , typename ARRAY >

2 void

3 example_bs (const BS &A, ARRAY &x)

4 {

5 assert (A.numRows ()==A.numCols ());

6 assert (A.numRows ()==x.length ());

7

8 // compute : x = upperTriangular(A)*x

9 tbmv(StorageInfo <BS >:: order , Upper , NoTrans , NonUnit ,

10 A.numRows (), A.numSubDiags ()+A.numSuperDiags()+1,

11 A.data(), A.leadingDimension ()

12 x.data(), x.stride ());

13

14 // compute : x = lowerUnitTriangular(A)*x

15 tbmv(StorageInfo <BS >:: order , Lower , NoTrans , Unit ,

16 A.numRows (), A.numSubDiags ()+A.numSuperDiags()+1,

17 A.data(), A.leadingDimension ()

18 x.data(), x.stride ());

19 }
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Note that A can be of type BandStorage, BandStorageView or ConstBandStorageView, while x

can only be of type Array or ArrayView. Element types of A and x have to be the same.
The wrapper functions sketched here can be regarded as low-level C++ wrapper functions for

BLAS. Except for the element type there is no further abstraction provided. As can be seen from
the example above, providing the same functionality of example bs for packed or full storage
schemes would require new implementations of similar functions.

Obviously this set of wrapper functions is still not sufficient to thoroughly support generic
programming. This aim will be achieved through another set of wrapper function introduced in
Section 4.3.1. These wrapper function can be considered as high-level wrappers and are built on
top of the low-level wrappers introduced here.

3.4 LAPACK

LAPACK implements more than 300 functions such that it is impossible to provide here a
comprehensive overview on its functionality. This section gives only a brief overview about some
LAPACK functions related to solving systems of linear equations. While this shows only a small
fraction of LAPACK, it allows one to reflect important requirements for the implementation of
efficient numerical libraries.

Even for a single numerical algorithm LAPACK provides quite a variety of implementations.
For a concrete problem one can choose that implementation which is most suitable to exploit
particular properties of this problem. Note that this is in diametral contrast to the idea of
providing one general implementation that is applicable on all types of problems. Instead one
ideally would like for each concrete problem a hand-optimized implementation. Choosing one of
the first numerical methods taught in undergraduate classes allows one most easily to exemplify
and motivate how to adapt algorithms to specific problems.

3.4.1 Motivation: LU Factorization

Consider the system of linear equations
Ax = b (3.1)

with given coefficient matrix A ∈ R
n×n, right-hand side b ∈ R

n and unknowns x ∈ R
n. Using

Gaussian elimination one can find a permutation matrix P , a lower unit triangular matrix L and
an upper triangular matrix U such that

A = PLU. (3.2)

Equation 3.2 constitutes the LU factorization of A. Obviously 3.1 is equivalent to

PLUx = b (3.3)

and can be solved in three steps:

1. compute b̃ = P−1b = PT b,

2. solve Ly = b̃ for y,

3. solve Ux = y for x.

3.4.2 Practical Aspects of the LU Factorization

Permutation matrix P is defined through row-interchanges carried out during the factorization.
Therefore a favorable representation of P is a vector containing the pivot indices. A pivot vector
p = (p1, . . . , pn) documents that during the factorization the i-th row was interchanged with the
pi-th row. More formally, p stores a sequence of transpositions. Let τi,j denote the transposition
interchanging the i-th and j-th element of a n-tupel. Then p represents the permutation π =
τ1,p1 ◦ · · · ◦ τn,pn

. An implementation can compute b← Pb efficiently in a single loop:
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for i = 1,..,n

swap b(i) and b(p(i))

As the inverse permutation is π−1 = τn,pn
◦ · · · ◦ τ1,p1 traversing the same loop backwards allows

one to compute b← P−1b:

for i = n,..,1

swap b(i) and b(p(i))

In general coefficient matrix A can be overwritten with L and U during the factorization, that is

A =





a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4



  ALU =





u1,1 u1,2 u1,3 u1,4

l2,1 u2,2 u2,3 u2,4

l3,1 l3,2 u3,3 u3,4

l4,1 l4,2 l4,3 u4,4



.

The total number of floating-point operation is of order 2
3n3 +O(n2).

If A is a tridiagonal matrix, than the number of the floating-point operation reduces to O(n).
However, matrix U will have in general two super-diagonals. For an efficient implementation this
requires that the storage scheme holding A allows one to overwrite its second super-diagonal (as
indicated by ‘∗’):

A =





a1,1 a1,2 ∗ 0 0

a2,1 a2,2 a2,3 ∗ 0

0 a3,2 a3,3 a3,4 ∗
0 0 a4,3 a4,4 a4,5

0 0 0 a5,4 a5,5




 ALU =





u1,1 u1,2 u1,3 0 0

m2,1 u2,2 u2,3 u2,4 0

0 m3,2 u3,3 u3,4 u3,5

0 0 m4,3 u4,4 u4,5

0 0 0 m5,4 u5,5




.

Elements of L are stored (in general rearranged due to pivoting) on the sub-diagonal of ALU .
This can be generalized for a general banded matrix with kl sub-diagonals and ku super-

diagonals. The total number of floating-point numbers is approximately 2n(kl + ku +1)kl. That
is, of order O(n) if kl, ku are much smaller than n. Triangular matrices U and L will have kl +ku

super-diagonals and kl sub-diagonals respectively.

3.4.3 LAPACK Routines for LU Factorization and Triangular Solvers

The same naming conventions used in BLAS are used by LAPACK. Where appropriate LAPACK
provides implementations that are especially adopted for tridiagonal matrices. This is for instance
indicated by ‘gt’ in the routine name standing for ‘general tridiagonal matrix’. For tridiagonal
matrices diagonals are simply stored in separate vectors such that no further storage scheme
needs to be introduced.

For solving systems of linear equations using the LU factorization LAPACK provides three
groups of functions:

1. LU Factorization: Compute A← LU and p
Routines Xgetrf, Xgbtrf and Xgttrf overwrite a coefficient matrix A with its LU decom-
position and provides a pivot vector p as output. As mentioned above for banded and
tridiagonal matrices the storage scheme holding A has to be sufficiently large.

2. Triangular Solver
Once the factorization is computed, triangular solver Xgetrs, Xgbtrs or Xgttrs can be
used to solve the system of linear equations. These solvers can also be used for multiple
right-hand sides, i. e. to solve

AX = B, X = (x1, . . . , xk), B = (b1, . . . , bk) ∈ R
n×k

simultaneously for X . Hereby the right-hand side B will be overwritten with solution X .
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3. Driver Routines: Xgesv, Xgbsv and Xgtsv are driver routines combining factorization and
triangular solver from above. Arguments are coefficient matrix A, right-hand side B and a
index vector p. On exit these will be overwritten with the factorization, solution and the
pivot indices respectively.

3.4.4 C++ Interface for LAPACK

FLENS can be linked with any LAPACK implementation and does not depend on external C-
interfaces such as CLAPACK[57]. Instead, FLENS directly interfaces with the Fortran routines
of LAPACK. This is because C-interfaces for LAPACK — as opposed to CBLAS for BLAS —
do not provide an additional benefit like support for row major storage. Only few LAPACK
implementations (e. g. ATLAS [88]) do actually support row major storage but usually only for
a small subset of LAPACK.

FLENS interfaces with LAPACK by declaring for each routine a corresponding external
function, e. g.

1 extern "C" {

2 void sgetrf_ (int *m, int *n, float *a, int *lda , int *ipiv , int *info);

3

4 void dgetrf_ (int *m, int *n, double *a, int *lda , int *ipiv , int *info);

5

6 ...

7 }

Common to most LAPACK functions is the last argument info. On return it contains a value
used for diagnostics. Note that Fortran routines have to receive all argument parameters by
reference, i. e. via pointers. For each external declaration FLENS implements a C++ wrapper
function. These allow that arguments can be passed by value and the diagnostics info becomes
the return value. These functions are further overloaded with respect to the element type:

1 // sgetrf

2 int

3 getrf(int m, int n, float *a, int lda , int *ipiv)

4 {

5 int info;

6 sgetrf_ (&m, &n, a, &lda , ipiv , &info);

7 return info;

8 }

9

10 // dgetrf

11 int

12 getrf(int m, int n, double *a, int lda , int *ipiv)

13 {

14 // ...

15 }

The overloaded getrf functions have input parameters:

m numbers of rows in matrix A,
n numbers of columns in matrix A,
a pointer to elements of A,
lda leading dimension of a.

and output parameters:

a overwritten by the LU factorization,
ipiv pointer to array storing the pivots of the factorization,
info integer used for diagnostics:

info = 0 indicates successful execution,
info =-i that the i-th parameter had an illegal value and
info = i that uii = 0.
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Using the C++ classes for the full storage scheme and vector storage scheme the LU factorization
of a matrix can be computed by

1 FullStorage <double , ColMajor > A(5 ,5);

2 Array <int > p(5);

3

4 // init A

5

6 int info = getrf(A.numRows (), A.numCols (),

7 A.data(), A. leadingDimension(),

8 p.data ());

9 if (info !=0) {

10 // error handling

11 }

Note that for most LAPACK implementations only column major storing is supported. Further-
more p has to be an array with element stride equal to one. Such consistency checks will be
performed by higher-level LAPACK wrappers introduced in Section 4.4 from the next chapter.

3.5 Discussion on Software Quality: Improvements and

Deficiencies

The interface for BLAS and LAPACK presented in this chapter consists of two parts: classes for
storage schemes and C++ wrapper functions for BLAS and LAPACK routines.

As was already discussed in Section 3.2.7, notable benefits result from the storage classes with
respect to correctness, robustness and ease of use. The proper allocation and handling of the
underlying data structures is not only an error prone task but also requires a good understanding
of many technical details. Checks in debug mode (e. g. for valid indices) allow for tracking down
typical errors while recompiling in non-debug mode still provides optimal performance.

Wrapper functions for BLAS and LAPACK exhibit a rather low level of abstraction. In
order to be independent of concrete BLAS and LAPACK implementations FLENS defines its
own enumeration types, e. g. , to indicate the storage order (StorageOrder) or storage of lower
or upper triangular parts (StorageUpLo). The wrapper functions are overloaded with respect
to the element type such that a wrapper like axpy provides a uniform interface for the BLAS
functions saxpy, daxpy, caxpy and zaxpy. But beside this, the interface of a wrapper function
is almost identical with the interface of the underlying BLAS or LAPACK function.

Due to the low level of abstraction, an implementation of a wrapper function only requires
a few lines of code. Given the considerable amount of BLAS and LAPACK functions, it is a
crucial requirement that the implementation of wrapper functions is a trivial task9. Further, this
guarantees that non of the features provided by BLAS and LAPACK gets lost due to improper
abstraction.

When interfacing with other external libraries the practical need for low level interfaces re-
mains apparent. Programmers familiar with an external library and the relevant data structures
can provide a interface without deep knowledge of FLENS. Obviously this is crucial for maintain-
ability. For this reason the BLAS and LAPACK interface presented in this chapter was realized
independent of the remaining FLENS library. Thus, it easily could be separated and maintained
as a pure C++ interface for BLAS and LAPACK (analogously to pure C interfaces like CBLAS
and CLAPACK).

On the flip side, deficiencies remain that are related to reusability and flexibility. Consider a
numerical algorithm that merely requires the computation of a matrix-vector product. A flexible
and reusable realization should allow that the same implementation can be used for different
matrix types. However, this is not possible as the various BLAS wrappers (e. g. gemv, gbmv,
symv, sbmv, trmv, . . . ) have different signatures. A higher level BLAS interface introduced in
the following chapter resolves this issue.

9In principle it would be possible to automatically generate most of the FLENS wrapper functions.



4 FLENS: Design and
Implementation Concepts

This chapter describes the most fundamental design and implementation concepts realized in
the FLENS library. These concepts are mainly exemplified by considering the integration of the
functionality provided by BLAS and LAPACK. The generality of the realized approach will be
demonstrated in the following chapters.

Section 4.1 introduces the techniques used for the realization of matrix and vector class hi-
erarchies. Section 4.2 then illustrates how matrix and vector types for BLAS and LAPACK
are integrated into these hierarchies. Section 4.3 describes a high-level interface for linear alge-
bra operations. This interface in particular can serve as a high-level interface for BLAS. The
section further addresses how FLENS avoids runtime overhead due to abstraction. Section 4.4
briefly outlines the high-level interface for LAPACK which is realized in FLENS. The chapter is
concluded by a discussion on improvements and remaining deficiencies with respect to software
quality.

4.1 Implementation of Class Hierarchies in Scientific Li-
braries

In the following, the FLENS class hierarchies for matrices are introduced. The matrix hierarchy
is organized based on two levels of specialization. The first level specifies a matrix to be either
general, triangular, symmetric or hermitian. On a second level these can be further specialized
with respect to properties that are relevant for a concrete implementation. For instance, a
triangular matrix with band structure and a symmetric block matrix are specializations of a
triangular and symmetric matrix respectively.

An extract of the FLENS matrix hierarchy is shown in Figure 4.1. From the diagram one
can read that class TriangularMatrix is a specialization of Matrix. Class TbMatrix in turn is
a specialization of TriangularMatrix.

FLENS realizes its class hierarchies by applying the Curiously Recurring Template Pattern
(CRTP) [78]. In many applications this design pattern is adopted merely for the sake of effi-
ciency. This is because the CRTP allows to achieve static polymorphism and therefore allows
to avoid virtual functions. In FLENS the realization of the CRTP in addition addresses the
ease of integrating new matrix and vector types. Integration of new types in particular requires
interoperability with existing types and reusability of algorithms. As will become evident in
Section 4.3 FLENS provides for this purpose a coherent mechanism breaking the complexity of
extending the library.

However, in order to apply the CRTP effectively to matrix and vector types some technical
hurdles have to be overcome. After briefly introducing the CRTP the remaining section addresses
these obstacles together with the solutions realized in FLENS.

35
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Matrix

GeneralMatrix TriangularMatrix SymmetricMatrix HermitianMatrix

TrMatrix TbMatrix TpMatrix

Figure 4.1: Extract of the FLENS matrix hierarchy.

4.1.1 Curiously recurring template pattern (CRTP)

Consider a base class Base declaring an abstract method aMethod implemented in a derived class
Implementation. For this example Listing 4.1 illustrates the basic idea of applying the CRTP
to avoid virtual functions. The key point is that the base class receives the type of the derived
class as template parameter (line 17). This allows the base class Base to provide a method impl

(line 5) for statically casting an instance to its derived type. Using the impl method a call of
aMethod gets dispatched (line 12) to the implementation provided by the derived class (line 21).
As the type of the derived type is known at compile time this can be inlined by the compiler.

1 template <typename Impl >

2 class Base

3 {

4 public :

5 Impl &impl()

6 {

7 return static_cast <Impl &>(* this);

8 }

9

10 void aMethod ()

11 {

12 impl (). aMethod ();

13 }

14 };

15

16 class Implementation

17 : public Base <Implementation >

18 {

19 public :

20

21 void aMethod ()

22 {

23 // ...

24 }

25 };

Listing 4.1: Curiously recurring template pattern (CRTP)

4.1.2 CRTP and Derived Classes with Template Parameters

Consider that a derived class has at least one template parameter. If methods declared in the
base class depend on this template parameter the CRTP can not be applied in a straightforward
manner. Essentially it has to be possible to retrieve template parameters of the derived class
through typedefs in the base class. However, a first and obvious attempt illustrated in the
following code snippet fails:
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1 template <typename Impl >

2 class Base

3 {

4 public :

5 typedef typename Impl:: T_Type T_Type ;

6

7 // ...

8 };

9

10 template <typename T>

11 class Implementation

12 : public Base <Implementation <T> >

13 {

14 public :

15 typedef T T_Type ;

16

17 // ...

18 };

The typedef inside the base class (line 5) falls back on the typedef in the derived class (line 15).
Obviously this can not work. In order to instantiate for example objects of type Derived<double>
the compiler first has to parse Base<Derived<double> >. However, Base<Derived<double> >

in turn depends on Derived<double>::T Type. Hence instantiation is impossible due to this
recursive dependency.

‘Outsourcing’ the typedef from Derived is a possible way out. Technically this can be achieved
using a trait class TypeInfo:

1 template <typename I>

2 struct TypeInfo

3 {

4 };

5

6 template <typename Impl >

7 class Base

8 {

9 public :

10 typedef typename TypeInfo <Impl >:: T_Type T_Type ;

11

12 // ...

13 };

The typedef in line 10 can now be defined before any instantiation takes place. Merely a forward
declaration of Derived is required:

1 template <typename T>

2 class Implementation;

3

4 template <typename T>

5 struct TypeInfo <Implementation <T> >

6 {

7 typedef T T_Type ;

8 };

Except for the need of specializing the TypeInfo trait the derived class can now be defined as
before:

1 template <typename T>

2 class Implementation

3 : public Base <Implementation <T> >

4 {

5 // ...

6 };
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4.1.3 CRTP and Multilevel Inheritance

Support for inheritance trees more than one level deep constitutes the next obstacle. Consider
the class hierarchy with two-level inheritance shown in Figure 4.2. Classes Base and Derived

declare abstract functions that are implemented in class Implementation. For exemplification

Base declares oneMethod()

Derived declares anotherMethod()

Implementation implements oneMethod(), anotherMethod()

Figure 4.2: Two Level Inheritance Tree.

consider functions dummy1 and dummy2:

template <typename I>

void

dummy1 (Base <I> &base)

{

base.oneMethod ();

}

template <typename I>

void

dummy2 (Derived <I> &derived )

{

derived .oneMethod ();

derived .anotherMethod();

}

Applying the CRTP to achieve static polymorphism requires that objects of type Base and
Derived can be converted to an object of type Implementation by a static cast . In general this
requires that the type of the most derived class is known to the base class at compile-time.

In a one-level inheritance tree the type of the implementation coincides with the template
parameter provided to the base class. In a multi-level inheritance the corresponding type can
not be retrieved directly as can be seen from the above example:

Implementation<T> is derived from Derived<Implementation<T> > and in turn

Derived<Implementation<T> > is derived from Base<Derived<Implementation<T> > >.

To retrieve the implementation type the TypeInfo trait can be extended to provide a corre-
sponding Impl typedef. Again this trait needs to be specialized for each derived class. For class
Derived such a specialization can be defined by

1 template <typename I>

2 class Derived ;

3

4 template <typename I>

5 struct TypeInfo <Derived <I> >

6 {

7 typedef typename TypeInfo <I>:: T_Type T_Type ;

8 typedef typename TypeInfo <I>:: Impl Impl;

9 };
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Note that typedefs in line 7 and 8 are in turn defined using the TypeInfo trait. This requires
the specialization of TypeInfo for the implementing class:

1 template <typename T>

2 class Implementation;

3

4 template <typename T>

5 struct TypeInfo <Implementation <T> >

6 {

7 typedef T T_Type ;

8 typedef Implementation <T> Impl;

9 };

Obviously this can be applied analogously to inheritance trees that are more than two levels
deep. TypeInfo definitions for abstract classes get resolved iteratively by the specialization of
TypeInfo for the implementing class.

The CRTP can now be applied as before. The base class provides the method impl statically
converting objects into their derived type:

1 template <typename I>

2 class Base

3 {

4 public :

5 typedef TypeInfo <I>:: Impl Impl;

6 typedef TypeInfo <I>:: T_Type T_Type ;

7

8 Impl &impl () {

9 return static_cast <Impl &>(* this);

10 }

11

12 void oneMethod () {

13 impl (). oneMethod ();

14 }

15 };

Analogously class Derived declares the abstract method anotherMethod:

1 template <typename I>

2 class Derived

3 : public Base <Derived <I> >

4 {

5 public :

6

7 void anotherMethod() {

8 this ->impl (). anotherMethod();

9 }

10 };

Implementations of oneMethod() and anotherMethod() are provided by the most specialized
class in the usual manner:

1 template <typename T>

2 class Implementation

3 : public Derived <Implementation <T> >

4 {

5 public :

6 void oneMethod () {

7 // ...

8 }

9

10 void anotherMethod() {

11 // ...

12 }

13 };

As demonstrated next the CRTP in this form is suitable for the realization of efficient matrix or
vector hierarchies.
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4.2 Matrix and Vector Classes for BLAS and LAPACK

While FLENS aims to be more than just a high-level interface to BLAS and LAPACK this
was considered as a minimal requirement. This section is dedicated to the implementation of
matrix and vector types based on the storage classes introduced in Chapter 3. These types are
in particular tailored for the interaction with BLAS and LAPACK.

4.2.1 Design Pattern

As was shown in Section 3.3 BLAS distinguishes between eleven matrix types. Adapting the
BLAS naming conventions FLENS defines corresponding matrix classes:

Full Storage Band Storage Packed Storage

General GeMatrix GbMatrix -

Symmetric SyMatrix SbMatrix SpMatrix

Hermitian HeMatrix HbMatrix HpMatrix

Triangular TrMatrix TbMatrix TpMatrix

FLENS separates interface and implementation of matrix types following the bridge pattern
[31]. For instance, class GbMatrix acts as interface for a general matrix with band structure.
Possible implementations are provided through classes realizing the band storage scheme like
BandStorage, BandStorageView or ConstBandStorageView introduced in Chapter 3. As there
is no need to exchange the implementation for a matrix or vector type at runtime the bridge
pattern can be implemented using templates [78]:

1 template <typename BS >

2 class GbMatrix

3 : GeneralMatrix <GbMatrix <BS> >

4 {

5 public :

6 typedef typename GbMatrix <BS >:: ElementType T;

7

8 T

9 operator () (int i, int j)

10 {

11 return _bs(i,j);

12 }

13

14 int

15 numRows () const

16 {

17 return _bs.numRows ();

18 }

19

20 // ...

21

22 private :

23 BS _bs ;

24 };

25

26 template <typename BS >

27 struct TypeInfo <GbMatrix <BS > >

28 {

29 typedef GbMatrix <BS > Impl;

30 typedef typename BS:: ElementType ElementType ;

31 };

Functionality gets directly delegated to the encapsulated storage scheme. Corresponding function
calls can be inlined by a compiler such that there is no inevitable runtime overhead due to
abstraction.
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Encapsulated storage schemes are often denoted as engines reflecting the exchangeability and
the responsibility to fulfill specific tasks.

As was noted in Section 3.1.1 a certain storage scheme can represent various matrix types.
Working with storage schemes directly the consistent and correct interpretation of a scheme
is completely up to the user. Through a matrix class such as GbMatrix a storage scheme gets
statically tagged as a general matrix with band structure. This improves type safety and therefore
allows a compiler to check and enforce the correct interpretation. Further the use of this design
pattern allows realization of a simplified BLAS interface as will be shown in Section 4.3.1.

For other matrix types besides the storage scheme, further information has to be encapsulated.
For a symmetric matrix with banded structure the corresponding matrix type also needs to store
whether the upper or lower triangular part of the storage scheme gets referenced1:

1 template <typename BS>

2 class SbMatrix

3 : SymmetricMatrix <SbMatrix <BS > >

4 {

5 public :

6

7 StorageUpLo

8 upLo() const

9 {

10 return _upLo;

11 }

12

13 // ...

14

15 private :

16 BS _bs;

17 StorageUpLo _upLo ;

18 };

19

20 // TypeInfo definition ...

Analogously to matrix types, class DenseVector serves as interface for dense vectors suited to
use Array, ArrayView or ConstArrayView as implementation.

4.2.2 Engine Interface

Interoperability with other libraries requires access to internal data structures of vectors and
matrices. For this purpose FLENS provides appropriate methods in its matrix and vector classes.
Method engine provides access to the underlying storage scheme. For convenience methods like
leadingDimension provide direct access to frequently needed components of the storage scheme.

1 template <typename FS>

2 class SyMatrix

3 {

4 public :

5

6 int

7 leadingDimension () const

8 {

9 return _fs .leadingDimension ();

10 }

11

12 // ...

13

14 FS &

15 engine ();

16

17 const FS &

1The same applies to hermitian matrices. Triangular matrices in addition have to store whether the diagonal
should be assumed to be unit or not.
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18 engine () const;

19

20 private :

21 FS _fs ;

22 StorageUpLo _upLo;

23 };

4.2.3 Matrix and Vector Views

FLENS makes it possible that the same storage scheme can represent different matrix (or vector)
types at the same time. Due to the clean separation of storage schemes and matrix types this
can easily be realized.

Consider as an example the LU factorization of a square matrix A. First the matrix gets
initialized and then factorized. Using the factorization to solve a system of linear equations
the lower-unit and upper triangular part of the square matrix are reinterpreted as triangular
matrices. In order to realize this the triangular matrices need to reference the underlying storage
scheme of A. If A is of type

GeMatrix <FullStorage <double , ColMajor > > A(N,N);

then methods upper and lower create corresponding triangular matrices referencing — not
copying — the storage scheme of A

TrMatrix <FullStorageView <double , ColMajor > > U = A.upper ();

TrMatrix <FullStorageView <double , ColMajor > > L = A.lowerUnit ()

Using standardized typedefs of the FLENS matrix types allows for the creation of triangular
(lines 5-6), symmetric (line 8), hermitian and general matrices referencing the same storage
scheme2:

1 typedef GeMatrix <FullStorage <double , ColMajor > > GEMatrix ;

2

3 GEMatrix A(N,N);

4

5 GEMatrix :: TriangularView U = upper(A);

6 GEMatrix :: TriangularView L = lowerUnit (A);

7

8 GEMatrix :: SymmetricView S = upper(A);

This allows a reusable implementation of numerical methods that are independent of particular
matrix or vector types through generic programming:

1 template <typename MatA , typename MatB >

2 void

3 someNumericalMethod(MatA &A, const MatB &B)

4 {

5 // ...

6 typename MatA :: TriangularView U = upper(A);

7 typename MatB :: ConstSymmetricView S = upper(B);

8 // ...

9 }

Note that these typedefs in turn rely on typedefs of the underlying storage scheme (line 10-12):

1 template <typename FS >

2 class GeMatrix

3 : public GeneralMatrix <GeMatrix <FS > >

4 {

5 public :

6 // shortcut for element type

7 typedef typename GeMatrix <FS >:: ElementType T;

8

2Function upper(A) just calls A.upper() and is provided for the sake of a more readable and natural syntax.
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9 // view types from FS

10 typedef typename FS:: ConstView ConstFSView ;

11 typedef typename FS::View FSView ;

12 typedef typename FS:: NoView FSNoView ;

13

14 // view types for GeMatrix

15 typedef TrMatrix <ConstFSView > ConstTriangularView;

16 typedef TrMatrix <FSView > TriangularView;

17 typedef TrMatrix <FSNoView > TriangularNoView;

18 // ...

19 };

If a triangular part should be copied instead of referenced the NoView variant can be used:

GEMatrix :: TriangularNoView T = upper (A); // copy the upper triangular of A

For referencing slices of matrices FLENS provides a convenient syntax. For example, a vector
referencing the third column can be created by

GEMatrix :: VectorView col = A(_ ,3); // reference 3rd column

Hereby is denoted as range operator and in this case used to select all rows of A. To select parts
of the column variants (from, to) and (from, stride, to) can be used:

// reference the first five elements of 3rd column

GEMatrix :: VectorView col2 = A(_(1 ,5) ,3);

// reference every second element of 3rd column

GEMatrix :: VectorView col3 = A(_(1,2,N),3);

A more thorough overview of the range operator and handling of views can be found in the
FLENS tutorial [45].

4.3 Linear Algebra Operations

In FLENS functions for linear algebra operations provide a simple and convenient interface.
These functions provide the same functionality as the BLAS routines but can be seamlessly
extended to support other matrix and vector types. Compared to the BLAS interfaces the
number of arguments is reduced and in particular arguments related to technical details of
storage schemes are completely omitted.

Using overloaded operators in C++ for linear algebra operations simplifies the task to imple-
ment reusable numerical methods. However, it is not trivial to achieve this without sacrificing
efficiency. FLENS combines and extends different existing approaches for this purpose. The
mechanism implemented in FLENS is in particular designed for the integration of new matrix
or vector types as well as new types of linear algebra operations.

4.3.1 FLENS Interface for BLAS

In Section 3.3.5 a simple BLAS wrapper was introduced. Overloaded versions make it possible to
skip the first letters from the function names that usually indicates the element type. The design
of the FLENS matrix and vector classes allows for further simplifications without a negative
impact on performance. Consider the BLAS routine gemv from Section 3.3.5 for the matrix-
vector product of the form

y ← αop(A)x + βy, op(A) = A, AT or AH . (4.1)

Letters ge in the function name are used to indicate that matrix A uses the full storage format.
Now this information can be moved into the signature of the function. Furthermore FLENS
types like GeMatrix or DenseVector encapsulate all technical details describing the underlying
storage schemes like leading dimension, strides or storage order. This suggests to implement
another wrapper mv on top of gemv. It’s main benefit is a slimed down signature and therefore
simplified usage:
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GeMatrix <FullStorage <double , ColMajor > > A(m,n);

DenseVector <Array <double > > y(m), x(n);

double alpha , beta;

// init A, x

mv(trans , alpha , A, x, beta , y);

The wrapper itself merely calls the adequate BLAS function. Required parameters for the BLAS
function are retrieved from matrix and vector objects:

1 template <typename ALPHA , typename MA, typename VX ,

2 typename BETA , typename VY >

3 void

4 mv( Transpose trans ,

5 ALPHA alpha , const GeMatrix <MA > &A, const DenseVector <VX > &x,

6 BETA beta , DenseVector <VY> &y)

7 {

8 // check pre -conditions

9

10 gemv(StorageInfo <MA >:: order ,

11 trans , A.numRows (), A.numCols (),

12 alpha ,

13 A.data(), A.leadingDimension(),

14 x.data(), x.stride (),

15 beta ,

16 y.data(), y.stride ());

17 }

Reasonable preconditions like appropriate dimensions of A and x are placed before calling the
BLAS function. FLENS further checks size of left-hand side arguments and performs a resize if
needed:

assert (x.length ()==(( trans == NoTrans ) ? A.numCols ()

: A.numRows ()));

int yLength = (trans == NoTrans ) ? A.numRows () : A.numCols ();

if (y.length ()!= yLength ) {

y.resize (yLength );

}

Wrappers for other BLAS functions are implemented following the same pattern, that means:

1. type information moves from the function name to the signature,

2. preconditions are checked through assertions,

3. left-hand side arguments are resized if needed.

Depending on the matrix type signatures of the wrappers are as follows:

matrix type signature functionality

general mv(trans, alpha, A, x, beta, y) y ← α op(A)x + βy

op(A) = A, AT or AH

hermitian mv( alpha, A, x, beta, y) y ← αAx + βy

symmetric mv( alpha, A, x, beta, y) y ← αAx + βy

triangular mv(trans, A, x ) x← Ax

User-defined matrix and vector types can be integrated by a user-defined wrapper with appro-
priate signature.

More comfortable and safer access of BLAS without performance loss is only one advantage.
An even more important benefit is eligibility for generic programming. Consider the conjugated
gradient method for solving a system of linear equations Ax = b, where A is symmetric and
positive definite. The most essential operation is the matrix-vector product. Using the wrapper
the method can be implemented independent of concrete types:
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1 template <typename MA , typename VX , typename VY >

2 void

3 cg(const SymmetricMatrix <MA > &A,

4 const Vector <VX > &x,

5 Vector <VY > &b)

6 {

7 ...

8

9 // Ap = A*p

10 mv(1, A, p, 0, Ap);

11

12 ...

13 }

Section 4.3.2 illustrates how FLENS supports notations like Ap =A*p for the matrix-vector prod-
uct. An essential issue in this respect is that without precautions such convenient notations
would easily introduce a considerable runtime overhead.

Impact on Software Quality

The introduced types of BLAS wrappers have a positive impact on software quality:

1. Efficiency: Checks for correct dimensions of the right-hand side arguments are only per-
formed in debug mode. Only checking dimensions of the left-hand side arguments and
resizing them if needed impose a marginal additional runtime overhead in non-debug mode.

2. Robustness/Correctness/Ease of use: Checking for consistent dimensions is a major
feature. To this extent such tests are not possible in underlying BLAS implementations
as they receive data structures through pointers. BLAS wrappers as well as the matrix
and vector classes encapsulate and hide technical details regarding storage formats. These
pieces can easily be tested thoroughly to provide solid and easy to use building blocks for
numerical applications.

3. Reusability/Extensibility: Numerical algorithms can be implemented using generic pro-
gramming and therefore can be reused for different types of vectors and matrices. Hereby
an algorithm depends on a specific set of operations (e. g. matrix-vector product, vector
sums). Proper documentation of this set in addition to a specification of their interface
allows for the application of user-defined matrix or vector types. Due to the design of the
FLENS matrix or vector hierarchy, such interfaces can be kept very simple and therefore
easy to support.

4.3.2 Overloading Operators: Existing Approaches

Using overloaded operators for linear algebra operations increases expressiveness and readability
of code. For a numerical library this is obviously a nice feature. Mathematical notations are
directly reflected in the source code. Code written by others becomes more comprehensible even
for people not so familiar with C++ or the FLENS library. But it also can speed up and simplify
implementation of numerical applications. With respect to software quality an expressive nota-
tion can be more than just an ‘eye candy feature’. Whether the implementation of a numerical
algorithm is correct can only be checked by a human familiar with the mathematics. For those
people an expressive notation in the implementation serves as a tool to ease this task. However,
quality of scientific software is only then increased if there is no negative impact on performance.
Maintaining performance in turn increases the complexity of a library tremendously. This not
only endangers the extensibility of a library but also makes it hard to guaranty its correctness. It
turns out that these restrictions can not be fulfilled trivially. Existing approaches that attempt
to overcome this problems are introduced in the following.
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Performance Issues

Supporting overloaded operators for linear algebra operations can easily lead to serious perfor-
mance penalties. In order to illustrate this it is already sufficient to consider an expression like
y = AT x. In an implementation this can efficiently be coded using an appropriate mv function.
For A being a general matrix and using α = 1, β = 0 this would result in

mv(Trans , 1, A, x, 0, y);

The underlying implementation of mv neither has to create any temporary objects nor setup the
transpose AT explicitly. While this should be an obvious requirement for the evaluation it is not
easily met when overloaded operators are used.

In order to allow an expressive notation like

y = transpose (A)*x;

a function transpose and an overloaded multiplication operator has to be implemented. Naive
implementations perform the underlying operation immediately and return the results:

1 const Matrix

2 transpose (const Matrix &A)

3 {

4 // create new matrix for result

5 // assign transpose of A to result

6 // return result

7 }

8

9 const Vector

10 operator *( const Matrix &A, const Vector &x)

11 {

12 // create new vector for result

13 // compute matrix -vector product

14 // return result

15 }

This would result in an evaluation of the expression that is equivalent to

t1 = transpose (A);

t2 = t1 * x;

y = t2;

creating two temporary objects t1 and t2. Setting up the transpose explicitly is hereby the most
crucial part.

Closures for Linear Algebra Expressions

The performance issue arising from overloaded operators was addressed by Stroustrup in [75].
The suggested solution makes it possible that the above example can be evaluated by a single
call of the mv function without additional runtime overhead.

The basic idea was to adopt the concept of closures known from functional programming.
A closure object contains all information needed such that an underlying operation can be per-
formed at a later point in time. Applying this, functions and operators for linear algebra opera-
tions return such closure objects. If operands are itself closures this leads to composite closures.
Evaluation of closures gets delayed until their assignment to the left-hand side.

For the above example the transpose function is called first. It receives a matrix object and
returns a closure of type TransMatrix keeping a reference to the operand:

1 struct TransMatrix

2 {

3 TransMatrix (const Matrix &A) : _A(A) {}

4

5 const Matrix &_A;

6 };

7
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8 const TransMatrix

9 transpose (const Matrix &A)

10 {

11 return TransMatrix (A);

12 }

Next the transpose-closure gets multiplied by a vector object. The resulting composite closure
is of type TransMatrixMultVector with references to the matrix and vector operand:

1 struct TransMatrixMultVector

2 {

3 TransMatrixMultVector (const TransMatrix &At, const Vector &x)

4 : _At (At._A), _x(x)

5 {}

6

7 const Matrix &_At;

8 const Vector &_x;

9 };

10

11 const TransMatrixMultVector

12 operator *( const TransMatrix &At , const Vector &x)

13 {

14 return TransMatrixMultVector (At, x);

15 }

The assignment operator of the vector class has to accept this composite closure as a right hand
side argument. Its implementation can then call function mv to trigger evaluation of the closure:

1 Vector &

2 Vector :: operator =( const TransMatrixMultVector &AtX)

3 {

4 mv(Trans , 1, AtX._At._A, AtX._x, 0, *this );

5 return *this;

6 }

For exemplification, the evaluation of y=transpose(A)*x results in

y.operator =( TransMatrixMultVector (TransMatrix (A),x));

and can be resolved by a compiler through inlining into a direct call of

mv(Trans , 1, A, x, 0, y);

Hence there is no inherent runtime overhead. It is notable that inlining can only be performed
due to the fact that closure types directly reflect the type of linear algebra operation and its
operands.

While this technique shows that efficiency and expressive notations not necessarily exclude
each other it is far from being a feasible method for practical usage. With the number of
supported operations and combinations of operations, the number of required closure classes
would explode.

Expression Templates

The template programming technique known as expression templates was developed indepen-
dently by Todd Veldhuizen [81] and David Vandevoorde [78]. Motivation again was avoidance
of temporary objects as well as minimization of memory read and write accesses during the
evaluation of linear algebra expressions.

The linear combination of vectors r = αx + βy + γz is an ideal example for the efficiency of
the expression template technique. Overloaded operators can be used to code the expression by

r = alpha*x + beta*y + gamma *z

while behind the scene evaluation happens iteratively in a single loop. Thereby each vector
element gets accessed only once, either for a memory read or write access:
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for (int i = 1; i<=n; ++i) {

r(i) = alpha*x(i) + beta*y(i) + gamma *z(i);

}

The technique requires that interface and implementation of vectors are separated following the
bridge pattern. For the sake of simplicity, engines considered here are only supposed to provide
methods for element access and vector length.

Again, evaluation of the closure is triggered in the assignment operator3 by accessing elements
of the right-hand side (as shown below in more detail):

1 template <typename Engine >

2 class Vector

3 {

4 public :

5 //...

6

7 template <typename RHS >

8 Vector <Engine >

9 operator =( const Vector <RHS > &rhs)

10 {

11 for (int i=1; i<=rhs .length (); ++i) {

12 engine ()(i) = rhs(i);

13 }

14 return *this;

15 }

16

17 //...

18 };

Closures are realized through additional engine types4 and the above example leads to closure
classes AddClosure and ScaleClosure. AddClosure encapsulates the addition of two vectors
whereas ScaleClosure encapsulates the multiplication of a vector with a scalar value. As before
closure objects in general keep references to their operands. Call operator () used for element
access returns the result of the underlying operation:

1 template <typename L, typename R>

2 class AddClosure

3 {

4 public :

5 AddClosure (const L &left , const R &right)

6 : _left(left), _right (right)

7 {

8 assert (left.length ()== right.length ());

9 }

10

11 int

12 length () const

13 {

14 return _left.length ();

15 }

16

17 double

18 operator ()( int i) const

19 {

20 return _left(i) + _right (i);

21 }

22

23 private :

24 const L &_left;

25 const R &_right ;

26 };

3To be precise, the assignment operator for right-hand side vectors running a different engine.
4As a closure can not be an l-value only const methods have to be implemented.
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The ScaleClosure class can be implemented almost analogously, but with one notable difference.
Storing const references to C/C++ built-in types would be inefficient [54]. Hence the closure
stores a copy of the scaling factor:

1 template <typename S, typename V>

2 class ScaleClosure

3 {

4 public :

5 ScaleClosure(S scalar , const V &vector )

6 : _scalar (scalar ), _vector (vector )

7 {

8 }

9

10 int

11 length () const

12 {

13 return _vector .length ();

14 }

15

16 double

17 operator ()( int i) const

18 {

19 return _scalar * _vector (i);

20 }

21

22 private :

23 S _scalar ; // keep copy of scaling factor

24 const V &_vector ;

25 };

As closures are regular vector engines composite closures do not require any extra treatment. In
fact creation of composite closures happens automatically through overloaded operators:

1 template <typename L, typename R>

2 Vector <AddClosure <L, R> >

3 operator +( const Vector <L> &l, const Vector <R> &r)

4 {

5 return AddClosure <L, R>(l.engine (), r.engine ());

6 }

7

8 template <typename S, typename V>

9 Vector <ScaleClosure <S, V> >

10 operator *(S scalar , const Vector <V> &vector )

11 {

12 return ScaleClosure <S, V>(scalar , vector .engine ());

13 }

For illustration one can consider sequentially how for r = alpha*x + beta*y + gamma*z the
overloaded operators create a composite closure of the right-hand side. For vectors x, y and z

using class Array<double> as engine and scalar values of type double the single steps are:

1. operator*() returns for alpha*x, beta*y and gamma*z respectively vector closures of type

Vector <

ScaleClosure <double , Array <double > >

>

2. operator+() returns for alpha*x + beta*y a vector closure of type

Vector <

AddClosure <

ScaleClosure <double , Array <double > >,

ScaleClosure <double , Array <double > >

>

>
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3. operator+() returns for alpha*x + beta*y + gamma*z a vector closure of type

Vector <

AddClosure <

AddClosure <

ScaleClosure <double , Array <double > >,

ScaleClosure <double , Array <double > >

>,

ScaleClosure <double , Array <double > >

>

>

Obviously type names like these could scare many people to death. It is therefore notable to
point out again that these types are created automatically and only the compiler actually has to
deal with them.

Advantages and Limitations of Expression Templates

Expression templates make the handling of closures and in particular of composite closures
feasible. For each elementary type of operation only one closure has to be implemented. In some
cases this technique can even outperform FORTRAN code [86].

However a few issues remain when using expression templates in a full featured numerical
library:

1. In certain cases expression templates can beat BLAS routines in terms of performance. A
prime example is the computation vector sums

y = x1 + · · ·+ xn

where n is sufficiently large. With expression templates computation is performed through
a single loop. Using BLAS routines the computation needs to be performed by adding the
vectors successively one by one:

y ← x1, y ← y + x2, . . . , y ← y + xn.

In both cases temporary objects are avoided. But in the latter case the number of memory
accesses is disproportionally higher5.

However, practical applications require that expressions occurring most frequently are eval-
uated most efficiently. In many numerical algorithms these expression can be evaluated
by a single or at most a few BLAS routines. In this case, the BLAS routine also provides
minimal memory access. In addition, BLAS implementations that exploit specific hardware
features are already available. Competing with BLAS routines in this field seems not to
promise any real pay-off. In the best case the same performance can be reached.

2. Expression templates permit a rather easy method to treat sums and linear combinations
of vectors and matrices. However it requires quite some effort to treat matrix-vector or
matrix-matrix products:

In order to treat expressions like in y = A*x where A is a general matrix a vector closure
engine can be implemented conforming to the above interface: the i-th element of the
closure is the dot product of the i-th row of A with x. Length of the closure equals the
number of rows of A.

However, this method would fail for x = A*x as here x also occurs on the left-hand side.
In this case the result of A*x has to be stored first in a temporary vector t. Afterwards x
can be overwritten by t.

5With expression templates there will be n · dim(y) memory read and dim(y) write accesses. Usage of BLAS
routines will result in n · dim(y) memory read but also n · dim(y) write accesses.
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3. Numerical methods for solving PDEs require solving systems of linear equations where the
matrices are of particular structure. In order to solve these certain iterative solvers can
provide optimal convergence rates. For the actual runtime performance of these iterative
solvers the efficient implementation of the matrix-vector product is crucial.

In some cases the integration of new, user-defined matrix or vector types can be a real
challenge. If the new types require change of the engine interface, all existing engine im-
plementations are affected - including the closure engines. Then supporting an operation
for a new type requires that the developer takes the complete expression template mecha-
nism into account. This means implementing an operation like the matrix-vector product
for a new type can not be added to the library in a selective and independent manner.
Already supporting addition of sparse vector efficiently would require modification of the
closure interface. This is necessary as for sparse vectors it only makes sense to iterate over
non-zero elements. With increasing diversity of matrix or vector types the interface design
and implementation of closure engines becomes a more and more complex task.

The issue that implementations of closures become more and more complicated when the
number of supported matrix and vectors types gets increased is addressed in the FLENS ap-
proach.

4.3.3 Overloading Operators: FLENS Approach

FLENS combines certain aspects of the ideas illustrated in Section 4.3.2. Composite closures
are created automatically as this was the case for expression templates. Evaluation of closures
is performed using the BLAS wrappers introduced in Section 4.3.1. The evaluation mechanism
is both transparent and efficient. In particular, the FLENS approach provides a simple mecha-
nism to add and integrate new matrix and vector types seamlessly into a numerical application
framework.

Closures

Closures are needed to delay evaluation of linear algebra operations that result in either a matrix
and vector type. Therefore it makes sense to distinguish between matrix closures and vector
closures. Concepts for both types of closures correspond to each other such that in the following
only vector closures are considered. Class VectorClosure receives three template parameters:

template <typename Op, typename L, typename R>

class VectorClosure;

The first parameter specifies the type of operation, the remaining the operand types. Hence
the vector closure type contains all static information about the encapsulated delayed operation.
Types for linear algebra operations are defined through empty structs:

struct OpAdd {}; // +

struct OpSub {}; // -

struct OpMult {}; // *

// ...

That means for the matrix-vector product Ax the closure gets instantiated with OpMult for Op

and types of A and x for L and R respectively.
Vector closures are derived from the vector base class. This reflects the fact that evaluation of

vector closures results in a particular vector type. Therefore such a closure itself can be regarded
as a vector type. Furthermore this will allow automatic creation and eases later treatment of
closures.

1 template <typename Op, typename L, typename R>

2 class VectorClosure

3 : public Vector <VectorClosure <Op , L, R> >

4 {

5 public :
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6 VectorClosure(typename Ref <L>:: Type l,

7 typename Ref <R>:: Type r);

8

9 typename Ref <L>:: Type left () const;

10

11 typename Ref <R>:: Type right () const ;

12

13 private :

14 typename Ref <L>:: Type _left ;

15 typename Ref <R>:: Type _right ;

16 };

Similar to the expression templates example, operands are referenced unless they are built-in
types. As also suggested in [78] such a distinction can be realized through a trait class, here
denoted as Ref. By default

typename Ref <L>:: Type _left;

is equivalent to

const L &_left ;

For operand types that should be copied (e. g. built-in types like float, double, . . . ) specializa-
tions of Ref are used to achieve the expansion

L _left ;

Deriving the vector closure from base class Vector further requires the definition of an appro-
priate TypeInfo trait. Hereby only defining the element type might be not trivial:

1 template <typename Op , typename L, typename R>

2 struct TypeInfo <VectorClosure <Op , L, R> >

3 {

4 typedef VectorClosure <Op, L, R> Impl;

5 typedef typename Promotion <typename L:: ElementType ,

6 typename R:: ElementType >:: Type ElementType ;

7 };

If both operands have the same element type then (by default) this is also the element type of
the result. FLENS allows operands to have different element types. Consider the sum of two
vectors where one vector has elements of type double and the other of type float. Through the
Promotion trait it is possible to define that the result has elements of type double. Examples
on how to support mixed element types using FLENS are presented in Chapter 5.

Overloading Operators

All operators and functions for linear algebra operations that result in either a matrix or vector
can now be overloaded following the same pattern:

1. The return type is a const closure. Depending on the operation this is either a matrix or
vector closure.

2. Matrix and vector operands are of type Matrix and Vector respectively. This means all
matrix and vector types integrated in the FLENS hierarchy are automatically accepted.

For the sum of two vectors this leads to the declaration of

1 // x + y

2 template <typename V1 , typename V2>

3 const VectorClosure <OpAdd , typename V1::Impl , typename V2::Impl >

4 operator +( const Vector <V1 > &x, const Vector <V2 > &y);

Its implementation just instantiates and returns the corresponding vector closure

typedef VectorClosure <OpAdd , typename V1::Impl , typename V2::Impl > VC;

return VC(x.impl(), y.impl ());
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Like in the expression template approach, composite closures are created automatically. Con-
sidering the sum of vectors r = x + y + z (all of type DenseVector<Array<double> >) the
right-hand side sequentially results in a composite closure as follows:

1. operator+() returns for x + y a vector closures of type

VectorClosure <OpAdd ,

DenseVector <Array <double > >,

DenseVector <Array <double > >

>

(4.2)

2. operator+() returns for x + y + z a vector closure of type

VectorClosure <OpAdd ,

VectorClosure <OpAdd ,

DenseVector <Array <double > >,

DenseVector <Array <double > >

>,

DenseVector <Array <double > >

>

(4.3)

Denoting by rhs the latter closure object, operands x, y and z can be retrieved by ‘traversing’
the composite closure:

x is reference by rhs.left().left(),

y is reference by rhs.left().right(),

z is reference by rhs.right().

This motivates to represent closures as trees. In this context such
trees are generally denoted as expression trees.

+

+ z

x y

Closure Evaluation: The Basic Idea

Again evaluation of the closure has to be triggered through the assignment operator defined in
the vector class. This could now be realized analogously to the Stroustrup’s example shown in
Section 4.3.2: an assignment operator in the DenseVector dedicated to the vector closure type
(4.3) can access each summand and evaluate the closure using the BLAS wrappers

copy(x, r); // r = x

axpy(1, y, r); // r += y

axpy(1, z, r); // r += z
(4.4)

Hence the integration of closures into the FLENS matrix or vector class hierarchy, the evaluation
of closures can be handled more flexible. Instead of several assignment operators dedicated
to certain closure types only the implementation of one assignment operator is required. This
operator expects an arbitrary vector type (which here in particular includes vector closures) and
delegates assignment to a copy function:

1 template <typename Engine >

2 template <typename Imp >

3 DenseVector <Engine > &

4 DenseVector <Engine >:: operator =( const Vector <Imp > &y)

5 {

6 copy(y.impl(), *this ); // i.e. *this = y.impl ()

7 return *this;

8 }

The copy function receives as first argument y.impl(), i. e. the vector closure for x+y+z whose
type is given in (4.3). Hence BLAS wrappers are extended for an overloaded version of copy
that can handle such a vector closure6:

6Note that this function is implemented independent of class DenseVector and therefore allows for the use of
any kind of vector implementation.
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1 template <typename VL , typename VR, typename VY >

2 void

3 copy(const VectorClosure <OpAdd , VL, VR > &x, Vector <VY > &y)

4 {

5 copy(x.left(), y.impl ());

6 axpy(1, x.right (), y.impl ());

7 }

Evaluation of the closure happens recursively. For r = x + y + z the resulting function calls
can be depicted in stack form as

r.operator=(x+y+z, r);

copy(x+y+z, r);

copy(x+y, r);

copy(x, r);

axpy(1, y, r);

axpy(1, z, r);

Functions that perform the actual computations are underlined. Obviously evaluation is equiv-
alent to and after inlining even identical to (4.4). Benchmarks on the FLENS website [45]
demonstrate that indeed no runtime overhead gets induced. Moreover, for current compilers
typically only very moderate optimization flags (e. g. -DNDEBUG and -O3) are sufficient.

Closure Evaluation: FLENS Policy

The sole reason to use overloaded operators in a numerical library has to be enhanced expres-
siveness of numerical code. This has to be achieved while obeying the constrains:

1. No inherent run-time overhead compared to direct usage of the BLAS wrappers.

2. Not misleading to produce inefficient code and in particular side-effects that create tempo-
rary objects.

3. The usage of overloaded operators makes it easier for outsiders to understand the mathe-
matical functionality. But for an insider, i. e. the programmer it has to be comprehensible
as to what exactly is going on behind the scene. That means it has to be absolutely
transparent which functions are used, in which order and with which parameters for the
evaluation of a linear algebra expression. In other words, there has to be a clear one-to-one
mapping between notation and the underlying evaluation mechanism.

An example of how a library providing overloaded operators can mislead a user to produce
inefficient code is an expression like

q = R*(x - y);

If a library in general allows such an expression the internal evaluation needs to be either equiv-
alent to

t = x - y;

q = R*t;

or to

q = R*x

q -= R*y;

In the first case this means that the evaluation requires the creation of a temporary object. This
would be a side-effect not visible to the user. Consider that the expression gets evaluated inside
a loop such that in each iteration a temporary object gets created. Then a user wants to store
the intermediate result of b - A*x in a vector allocated only once outside the loop:
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// allocate r

while (...) {

r = b - A*x;

q = R*r;

}

In the second case the evaluation does not conform numerically to the expression7 q = R*(b -

A*x). Such an evaluation would not only lead to numerically incorrect results but also would
realize an extremely obscure evaluation mechanism.

The way FLENS evaluates closures makes it absolutely transparent as to how expressions
are evaluated. It also allows for the prevention of unintended creation of temporary objects.
Expressions like R*(b - A*x) in general lead to an error at compile time but can be supported
if the user provides a function for the evaluation of the corresponding closure.

Closure Evaluation: The General Realization in FLENS

Reviewing again the above example for the sum of three vectors will illustrate the general concept
realized in FLENS. The basic idea was to use:

1. BLAS wrappers for copy and axpy from Section 4.3.1 for the actual computations and

2. an additional version of copy (dedicated to a certain type of vector closure) controlling
how composite closures get ‘decomposed’ and evaluated.

BLAS wrappers handling matrix and vector closures are provided by the FLENS library. These
wrappers rely on BLAS wrappers for concrete matrix and vector types that conform to the same
functionality and naming scheme of BLAS. Table 4.2 enlists wrapper functions for scaling and
adding vectors as well as carrying out matrix-vector products. For operations that can be carried

BLAS wrapper signature functionality

scal scal(alpha, x) y ← α x

copy copy(x, y) y ← x

axpy axpy(alpha, x, y) y ← x

mv mv(trans, alpha, A, x, beta, y) y ← α op(A)x + βy

op(A) = A, AT or AH

Table 4.2: Extract of wrapper functions for BLAS level 1 and 2.

out by BLAS routines FLENS already provides such wrapper functions. For new user-defined
matrix or vector types, this set can easily be extended. To be more explicit, only this set needs
to be extended. The whole mechanism of overloaded operators and handling closures already
provided by FLENS remains unaffected by new matrix or vector types.

4.4 LAPACK Interface

As for BLAS routines, wrappers for LAPACK can provide a much more convenient interface.
First of all less parameters are required as details about storage schemes are encapsulated in the
FLENS matrix types. Further it allows a uniform interface for routines implementing the same
numerical method optimized for different matrix types. Listing 4.2 shows LAPACK wrappers
for the LU factorization of general matrices.

1 template <typename FS>

2 int

3 trf(GeMatrix <FS> &A, DenseVector <Array <int > > &P)

4 {

7Note that for floating point numbers a*(b+c) in general is not equal to a*b + a*c!
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5 return getrf(A.numRows (), A.numCols (),

6 A.data(), A. leadingDimension(),

7 P.data ());

8 }

9

10 template <typename BS >

11 int

12 trf(GbMatrix <BS > &A, DenseVector <Array <int > > &P)

13 {

14 return gbtrf(A.numRows (), A.numCols (),

15 A.numSubDiags (), A.numSuperDiags()-A.numSubDiags (),

16 A.data(), A. leadingDimension(),

17 P.data ());

18 }

Listing 4.2: LAPACK wrappers for the LU factorization of general matrices.

For general matrices based on full storage and band storage schemes the factorization gets carried
out by functions getrf and gbtrf respectively. Note that the low-level LAPACK wrappers
introduced in Section 3.4 overloaded these functions with respect to the matrix element type.

4.5 Discussion on Software Quality: Improvements and

Deficiencies

This chapter illustrated fundamental concepts realized in the design and implementation of
FLENS. Several techniques were applied to combine flexibility, extensibility and ease of use
without sacrificing efficiency. This was possible because of a thoroughly orthogonal design and
a proper combination of techniques.

Virtual functions in C++ can lead to a considerable runtime overhead [26]. This was one
reason why C++ has gained a bad reputation within the high-performance computing commu-
nity. In FLENS the Curiously Recurring Template Pattern (CRTP) was used and adapted to
realize multilevel class hierarchies for matrix and vector types. One advantage of applying the
CRTP is the avoidance of virtual functions. It was illustrated how the bridge pattern can be used
to integrate matrix and vector types for BLAS and LAPACK into the FLENS class hierarchy.
It was further shown how the CRTP based class hierarchy can be combined with concepts like
closures and expression templates to allow a convenient interface for BLAS and LAPACK. In
particular, overloaded operators can be used to provide an expressive and intuitive notation for
linear algebra operations. It was hereby demonstrated how the ease of use can be improved
dramatically without any negative impact on performance (cp. the benchmarks on [45]).

The expressiveness provided by FLENS enhances the correctness of a numerical implementa-
tion. Furthermore, because of the high degree of abstraction it eases the possibility of implement-
ing reusable numerical methods. In this chapter features and concepts of FLENS were mainly
exemplified for BLAS and LAPACK. However, FLENS is more than just a high-level C++ in-
terface for these libraries. FLENS provides a simple and transparent mechanism for extending
the set of matrix and vector types as well as the set of supported linear algebra operations. All
these features will be illustrated in more detail in the following chapters.

As was shown in Section 4.3.3, several efforts were realized in FLENS in order to prevent
obscure side-effects like the unintended creation of temporary objects. For example, a linear
algebra expression like x = A*x gets rejected by FLENS if the evaluation would require the
implicit creation of a temporary object. For programmers who are inexperienced in scientific
computing this might seem to be an immoderate restriction at first. Nevertheless, for the serious
development of scientific software the transparency of an implementation is crucial.
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Algorithms

This chapter briefly illustrates various techniques for extending the FLENS library and realizing
reusable implementations of numerical linear algebra algorithms. On the one hand, reusability
implies that the same implementation can be used to treat different — but in general similar —
types of problems. On the other hand, reusability in the context of scientific software implies that
performance optimizations can be applied afterwards, in a way that does not require to modify
the original implementation. For the sake of simplicity and compactness, all these different topics
are covered exemplary in this chapter.

Section 5.1 illustrates how to extend FLENS for a new matrix type. This extension also
includes the support of linear algebra operations that are not part of standard BLAS implemen-
tations. Section 5.2 briefly outlines how to support element types of matrices and vector that are
of arbitrary precision. Using the conjugated gradient method as an example, Sections 5.3 and
5.2 demonstrate the capabilities provided by FLENS for realizing reusable numerical software
components. How optimizations can be applied orthogonal to existing implementations is shown
in Section 5.5.

5.1 User Defined Matrix and Vector Types

As a simple example for a new matrix type consider diagonal matrices. The code snippet in
Listing 5.1 illustrates some typical functionality that a user might expect from a corresponding
implementation: access to diagonal elements for initialization (lines 8-10) and computation of
matrix-vector products (lines 12 and 13).

1 int n=10;

2

3 DiagonalMatrix <double > D(n);

4 DenseVector <Array <double > > x(n), y(n), r;

5

6 for (int i=1; i<=n; ++i) {

7 D(i) = i;

8 x(i) = n-i;

9 }

10

11 y = D*x;

12 r = y - D*x;

Listing 5.1: Example for the usage of a diagonal matrix type.

As described in Section 4.1, the integration of the new matrix type into the FLENS hierarchy
requires defining a corresponding TypeInfo trait:

1 template <typename T>

2 struct DiagonalMatrix;

3

4 template <typename T>

5 struct TypeInfo <DiagonalMatrix <T> >

57
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6 {

7 typedef DiagonalMatrix <T> Impl;

8 typedef T ElementType ;

9 };

Objects of type DiagonalMatrix are derived from SymmetricMatrix and internally store the
diagonal elements in a vector of type DenseVector. Constructors, operators for element access
and method dim delegate the functionality to the encapsulated vector:

10 template <typename T>

11 struct DiagonalMatrix

12 : public SymmetricMatrix <DiagonalMatrix <T> >

13 {

14 DenseVector <Array <T> > d;

15

16 DiagonalMatrix(int n)

17 : d(n)

18 {

19 }

20

21 int

22 dim () const

23 {

24 return d.length ();

25 }

26

27 const T &

28 operator ()( int index) const

29 {

30 return d(index );

31 }

32

33 T &

34 operator ()( int index)

35 {

36 return d(index );

37 }

38 };

What remains to get the code in Listing 5.1 to work is an implementation of the matrix-vector
product. Recall that no operators need to be overloaded and that the creation and treatment
of closures is already handled by FLENS as described in Section 4.3. Merely an appropriate
specialization of an mv function needs to be implemented which is capable of multiplying a
diagonal matrix with a dense vector1:

39 template <typename ALPHA , typename MD, typename VX , typename BETA , typename VY>

40 void

41 mv(ALPHA alpha , const DiagonalMatrix <MD > &D, const DenseVector <VX > &x,

42 BETA beta , DenseVector <VY> &y)

43 {

44 assert (D.dim ()==x.length ());

45 assert (D.dim ()==y.length ());

46 assert (x.firstIndex ()==1);

47 assert (y.firstIndex ()==1);

48

49 for (int i=1; i<=D.dim (); ++i) {

50 y(i) = D(i)*x(i);

51 }

52 }

The above example demonstrates a basic philosophy of FLENS: ‘only implement what is needed’.
This allows for the complexity of an implementation to remain proportional to the complexity
of the addressed problem. However, if a user requires in addition a matrix-matrix product then

1Obviously it would be easy to further optimizes this implementation and make it more flexible.
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this can be easily added. This in turn guarantees the extensibility of existing implementations.
Further, optimizations of the above matrix-vector product can be applied without deep knowledge
of FLENS2.

5.2 Supporting Element Types with Arbitrary Precision

GMP[34] is a free library for arbitrary precision arithmetic, operating on signed integers, rational
numbers and floating point numbers. Data types from GMP can be used as element types for
matrices and vectors. However, the standard BLAS and LAPACK implementations only3 support
the built-in types float, double, complex<float> and complex<double>. Fortunately the C++
interface of the GMP library already provides overloaded operators for arithmetic operations.
This allows a simple generic implementation of BLAS and LAPACK, e. g. :

1 template <typename ALPHA , typename X, typename Y>

2 void

3 axpy(ALPHA alpha , const DenseVector <X> &x, DenseVector <Y> &y)

4 {

5 // assertions

6 for (int i=x.firstIndex (), I=y.firstIndex (); i<=x. lastIndex (); ++i) {

7 y(I) += alpha*x(I);

8 }

9 }

5.3 The Conjugated Gradient (cg) Method

The cg-method is an iterative method to solve a system of linear equations

Ax = b, A ∈ R
n×n, x, b ∈ R

n (5.1)

where the coefficient matrix A is symmetric positive definite. Using an initial guess x(0) the
cg-method produces iterates

x(i) ∈ x(0) + Ki(b −Ax(0), A), Ki(r, A) := span{r, Ar, . . . , Ar(i−1)}

such that
(
x(i) − x∗

)T
A
(
x(i) − x∗

)
is minimized where x∗ denotes the exact solution. The

subspace Ki(r, A) of R
n is denoted as Krylov subspace of matrix A for the initial residual r4.

Pseudocode for the cg-method is given in Algorithm 5.1 (cp. [74]).

Algorithm 5.1 (Conjugated Gradient method).

Start: Choose initial guess x(0) ∈ R
n and set p(0) := r(0) := b−Ax(0)

For k = 0, 1, . . .

If p(k) = 0:

x(k) is solution of Ax = b. Stop.

Otherwise compute

α :=
(r(k))T

r(k)

(p(k))
T

Ap(k)

2The above implementation of mv could internally call a function from an external library.
3Commercial implementations like for instance the Intel Math Kernel Library actually support arbitrary pre-

cision and interval arithmetic.
4The cg-method is commonly denoted as Krylov method, reflecting the type of subspaces considered to produce

the iterates. The cg-method is also denoted as a non-stationary method, reflecting the fact that information used
to produce an iterate changes in each iteration.
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x(k+1) := x(k) + αp(k)

r(k+1) := r(k) − αkAp(k)

βk :=
(r(k+1))

T
r(k+1)

(r(k))T
r(k)

p(k+1) := r(k+1) + βkp(k)

It can be shown that Algorithm 5.1 produces after, at most n iterations the exact solution x∗.
However, due to round off errors in general more iterations are required in an implementation.
A typical stopping criterion is to require that (r(k))T r(k) has fallen below a given threshold. For
the cg-method (cp. [74], [21]) the error estimate

||x(k) − x∗||A ≤ 2

(√
κ− 1√
κ + 1

)k

||x(0) − x∗||A (5.2)

holds, where κ = κ(A)2 = ||A||2||A−1||2 denotes the condition of A and ||x||A =
√

xT Ax the
energy norm. As can be seen from (5.2) the rate of convergence depends on the condition of A.
As outlined in the following section, the rate of convergence can be increased by preconditioning.

Listing 5.2 shows an implementation of the cg-method in FLENS. Due to the use of overloaded
operators the core of the implementation (lines 9-26) directly reflects the above pseudo-code. The
cg trait used in lines 5 and 6 for the local definition of vectors and scalar valued variables is
explained in more detail below. The most expressive operation in each iteration of the cg-method
is the computation of Ap(k). As this matrix-vector product is needed twice (line 17 and 19) the
result gets stored in vector Ap (line 16).

1 template <typename MA , typename VX, typename VB >

2 int

3 cg(const MA &A, VX &x, const VB &b, double tol , long maxIterations)

4 {

5 typename cg_ <VB >::T alpha , beta ,

6 rNormSquare , rNormSquarePrev;

7 typename cg_ <VB >:: AuxVector Ap , r, p;

8

9 r = b - A*x;

10 p = r;

11 rNormSquare = r*r;

12 for (long k=1; k<= maxIterations; ++k) {

13 if (rNormSquare <=tol) {

14 return k-1;

15 }

16 Ap = A*p;

17 alpha = rNormSquare /(p * Ap);

18 x += alpha*p;

19 r -= alpha*Ap;

20

21 rNormSquarePrev = rNormSquare ;

22 rNormSquare = r*r;

23 beta = rNormSquare /rNormSquarePrev;

24 p = beta*p + r;

25 }

26 return maxIterations;

27 }

Listing 5.2: Generic implementation of the cg-method.

In most cases the vector type of b can be used for local vectors5 and its element type for scalar
valued variables. This is the default behavior of the cg trait:

28 template <typename A>

29 struct cg_

5Note that this is not the case for the type of x. If x is a sparse vector the product A*x in general will be a
dense vector.
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30 {

31 typedef A AuxVector ;

32 typedef typename A:: ElementType T;

33 };

However, if b is a vector view, its type is not suitable. This case is treated by the specialization:

34 template <typename I>

35 struct cg_ <DenseVector <I> >

36 {

37 typedef typename DenseVector <I >:: NoView AuxVector ;

38 typedef typename DenseVector <I >:: ElementType T;

39 };

In order to apply the cg-method on user defined matrix or vector types the implementation of
corresponding BLAS functions is required (cp. Section 5.1). This reflects a general concept:
each generic implementation of an iterative method depends on a certain set of BLAS functions.
Further this shows that performance tuning of an iterative method can be directly achieved by
tuning the underlying BLAS implementation.

5.4 The Preconditioned Conjugated Gradient Method

The fact that the convergence rate depends on the condition of the coefficient matrix is exploited
by the preconditioned conjugated gradient (pcg) method (see e. g. [74]). Assume that a symmet-
ric positive definite matrix B exists approximating A−1 such that BA ≈ I (and in particular
κ(BA)2 ≪ κ(A)2). As matrix

Ã := B− 1
2 (BA)B

1
2 = B

1
2 AB

1
2

results from a similarity transform, it follows that κ(Ã)2 = κ(BA)2 ≪ κ(A)2. If x̃∗ solves

Ãx̃ = b̃, b̃ := B
1
2 b (5.3)

then x∗ = B
1
2 x̃∗ solves (5.1). Applying the cg-method to (5.3) leads to Algorithm 5.2 which is

adapted from [74]. The algorithm does not require to setup Ã and b̃ explicitly and computes the
solution of (5.1). Compared to Algorithm 5.1 each iteration requires an additional matrix-vector
multiplication with the preconditioner B.

Algorithm 5.2 (Preconditioned Conjugated Gradient method).

Start: Choose initial guess x(0) ∈ R
n and set r(0) := b−Ax(0), p(0) := Br(0)

For k = 0, 1, . . .

If p(k) = 0: x(k) is solution of Ax = b. Stop.

Otherwise compute

α :=
(r(k))T

q(k)

(p(k))T
Ap(k)

x(k+1) := x(k) + αkp(k)

r(k+1) := r(k) − αkAp(k)

q(k+1) := Br(k+1)

βk :=
(r(k+1))

T
q(k+1)

(r(k))T
q(k)

p(k+1) := q(k+1) + βkp(k)
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The generic implementation of the pcg-method (Listing 5.3) has an additional template parame-
ter Prec for the preconditioner B. Beside this, the implementation follows the same pattern that
was used for the cg-method: using the same trait for local variables (lines 6-7) and storing the
matrix-vector product in a local vector (line 19).

1 template <typename Prec , typename MA , typename VX , typename VB >

2 int

3 pcg(const Prec &B, const MA &A, VX &x, const VB &b,

4 double tol , long maxIterations)

5 {

6 typename cg_ <VB >::T pNormSquare , alpha , beta , rq , rqPrev ;

7 typename cg_ <VB >:: AuxVector r, q, p, Ap;

8

9 r = b - A*x;

10 q = B*r;

11 p = q;

12

13 rq = r*q;

14 for (long k=1; k<= maxIterations; ++k) {

15 pNormSquare = p*p;

16 if (pNormSquare <=tol) {

17 return k-1;

18 }

19 Ap = A*p;

20 alpha = rq/(p*Ap);

21 x += alpha*p;

22

23 r -= alpha*Ap;

24 q = B*r;

25

26 rqPrev = rq;

27 rq = r*q;

28 beta = rq/rqPrev ;

29 p = beta*p + q;

30 }

31 return maxIterations;

32 }

Listing 5.3: Generic implementation of the pcg-method.

For the practical application the question remains how to chose a preconditioner B ≈ A−1. A
simple type of preconditioning is the so called diagonal or Jacobi preconditioner6 where B =
diag(A)−1. A straight forward way to apply the Jacobi preconditioner would be to initialize a
diagonal matrix (line 7) with the reciprocals of the diagonal elements (lines 11-13) and pass it
to the pcg-method (line 15):

1 typedef SbMatrix <BandStorage <double , ColMajor > > Mat ;

2 typedef DenseVector <Array <double > > Vec ;

3

4 int n = 128;

5 Mat A(n, Upper , 1);

6 Vec b(5), x(5);

7 DiagonalMatrix <Vec > B(n);

8

9 // init A, b

10

11 for (int i=1; i<=n; ++i) {

12 B(i) = 1/A(i,i);

13 }

14

15 int it = pcg(B, A, x, b);

While in this case setting up the preconditioner matrix explicitly is acceptable, this is not feasi-
ble for more sophisticated types of preconditioning. The following alternative to this approach

6The denotation ‘Jacobi’ preconditioner will be motivated in Section 6.7.
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demonstrates an implementation concept that will be frequently used in the following chap-
ters. Each type of preconditioner gets realized through a dedicated matrix type, in this case
JacobiPrec:

1 template <typename MA>

2 class JacobiPrec ;

3

4 template <typename MA>

5 struct TypeInfo <JacobiPrec <MA > >

6 {

7 typedef JacobiPrec <MA > Impl;

8 typedef double ElementType ;

9 };

As can be seen from the above declaration, this new matrix type receives the type of the co-
efficient matrix A as a template parameter. The preconditioner class itself is derived from
SymmetricMatrix (line 12) and merely keeps a reference to the coefficient matrix (line 20):

10 template <typename MA>

11 class JacobiPrec

12 : public SymmetricMatrix <JacobiPrec <MA > >

13 {

14 public :

15 JacobiPrec (const MA &_A)

16 : A(_A)

17 {

18 }

19

20 const MA &A;

21 };

For the JacobiPrec class the matrix-vector product q = Bp can then be implemented as follows:

1 template <typename MA, typename VB , typename VX>

2 void

3 mv(double alpha , const JacobiPrec <MA > &B, const DenseVector <VB> &p,

4 double beta , DenseVector <VX> &x)

5 {

6 assert (alpha ==1.);

7 assert (beta ==0.);

8

9 for (int i=p.firstIndex (); i<=p.lastIndex (); ++i) {

10 p(i) = p(i)/B.A(i,i);

11 }

12 }

From a performance perspective it might be more favorable to store the reciprocals of the diagonal
elements of A−1 in an extra vector. This is due to the fact that floating point divisions are more
expensive than multiplications. As in each iteration of the pcg-method a matrix-vector product
has to be computed, the additional memory required will most likely pay off. Obviously the above
implementation of the JacobiPrec and the corresponding mv function can easily be adopted to
take this into account. However, it is notable that in both cases neither the implementation of
the pcg-method nor the usage of the pcg-method gets affected by such performance tweaks:

1 typedef SbMatrix <BandStorage <double , ColMajor > > Mat;

2 typedef DenseVector <Array <double > > Vec;

3

4 int n = 128;

5 Mat A(n, Upper , 1);

6 Vec b(5), x(5);

7 JacobiPrec <Mat > B(A);

8

9 // init A, b

10

11 int it = pcg(B, A, x, b);
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5.5 Extending the Set of Basic Linear Algebra Operations

As was mentioned in the end of Section 5.1 performance tuning of iterative methods can typically
be achieved by tuning the underlying BLAS implementation. In some cases further improvements
can be obtained by extending the set of operations supported by BLAS. Consider the computation
of the residual

r = b - A*x;

In general this computation can be carried out equivalently to

r = b;

r -= A*x;

which in turn is equivalent to

copy(b, r);

mv(NoTrans , -1, A, x, 1, r);

For certain types of matrices it can be much more efficient to compute the residual through a
dedicated function, as for instance

residual (b, A, x, r);

For diagonal matrices and dense vectors a simple but efficient implementation is given through

1 template <typename VB , typename MD, typename VX , typename VR>

2 void

3 residual (const DenseVector <VB> &b, const DiagonalMatrix <MD> &D,

4 const DenseVector <VX> &x,

5 DenseVector <VR> &r)

6 {

7 for (int i=x.firstIndex (); i<=x. lastIndex (); ++i) {

8 r(i) = b(i) - D(i)*x(i)

9 }

10 }

Listing 5.4: Special purpose implemetation to compute the residual for a diagonal coefficient
matrix and dense vectors.

The mechanism realized in FLENS for linear algebra operations can be extended such that the
expression r = b-A*x automatically gets evaluated:

1. through a specialized residual function if such a function is available and

2. otherwise through copy and mv functions.

In order to extend FLENS in this respect one has to be familiar with the concept of closures
realized in FLENS. This is shown in the remaining section. However, once completed it becomes
absolutely invisible to other users. Merely providing an implementation like in Listing 5.4 is
required. Recall that in FLENS the expression b - A*x results in a closure of type

VectorClosure <OpSub ,

VB,

VectorClosure <OpMult ,

MA ,

VX >

>

where VB, MA and VX represent types of b, A and x respectively. This closure gets assigned to
vector r through a call of a copy function.

1 // r = b -A*x

2 template <typename VB , typename MA, typename VX , typename VR>

3 void

4 copy(const VectorClosure <OpSub , VB, VectorClosure <OpMult , MA, VX > > &b_Ax ,

5 Vector <VR > &r)

6 {

7 residual (b_Ax.left(), b_Ax.right (). left(), b_Ax.right (). right (), r.impl ());

8 }
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If a specialized implementation of residual exists for the corresponding matrix and vector types
this implementation gets called and otherwise a default implementation:

1 template <typename VB, typename MA , typename VX, typename VR >

2 void

3 residual (const Vector <VB> &b, const Matrix <MA > &A, const Vector <VX > &x,

4 Vector <VR> &r)

5 {

6 typedef typename VR:: ElementType T;

7

8 copy(b.impl(), r.impl ());

9 mv(NoTrans , T(-1), A.impl(), x.impl(), T(1), r.impl ());

10 }

All these redirections can be inlined by the compiler such that no run-time overhead gets induced.
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6 The Finite Difference Method
(FDM) and Poisson Solvers

In this chapter the Dirichlet-Poisson problem in one and two space dimensions serves as a model
problem. The problem is only considered on simple domains (the unit interval in one dimension
and the unit square in two dimensions) such that an appropriate discretization can be obtained
using a simple finite difference approximation. The simplicity of this model problem is intended
in order to keep the main focus on the implementation of different numerical solvers for the
discretized problem. In this respect the implementation of the multigrid method presented in
this chapter is most notable. The very same implementation can be used to solve the discretized
problem not only in one or two space dimensions but also either serial or parallel.

Section 6.1 introduces the one-dimensional model problem on the unit interval and its dis-
cretization. This section also addresses different issues that are relevant for the later implemen-
tation of numerical solvers. Direct solvers are presented in Section 6.2 while stationary iterative
solvers are discussed in Section 6.3. The implementation of direct and stationary iterative solvers
serve as building blocks for the multigrid method covered in Section 6.4. Having motivated the
different types of solvers for one space dimension, the underlying concepts are extended to two
dimensions in Section 6.5. Parallelization of the multigrid method is addressed in Section 6.6.
Section 6.7 briefly outlines various possibilities and aspects of applying the preconditioned cg-
method that was already introduced in the previous chapter. The components developed for the
multigrid method immediately allow the parallelization of the cg-method and provide additional
preconditioners.

6.1 Initial Model Problem

On the unit interval, the one-dimensional Dirichlet-Poisson problem reads:

− u′′(x) = f(x) x ∈ (0, 1), (6.1)

u(0) = d0, (6.2)

u(1) = d1. (6.3)

This states a two-point boundary value problem on the interval Ω = (0, 1) with Dirichlet bound-
ary conditions. For f ∈ C0(Ω̄) a unique solution u∗ ∈ C2(Ω) ∩ C0(Ω̄) is given by (cp. [76] and
[62])

u∗(x) = d0 + (d1 − d0)x +

1∫

0

G(x, s)f(s) ds,

where

G(x, s) :=

{
s(1− x) if 0 ≤ s ≤ x,

x(1− s) if x < s ≤ 1,

defines Green’s function for the above problem.

67
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6.1.1 Finite Difference Approximation

The basic idea of the Finite Difference Method (FDM) is to replace derivatives with difference
quotients. Thus a continuous problem as given through equations (6.1) to (6.3) gets approximated
by a system of algebraic equations.

For a suitable grid size h = 1
N+1 the continuous problem will be discretized on the equidistant

grid

Ω̄h = {xi = ih | i = 0, . . . , N + 1} (6.4)

illustrated in Figure 6.1. The set of interior grid points is

Ωh = {xi = ih | i = 1, . . . , N} (6.5)

such that ∂Ωh = Ω̄h\Ωh denotes grid points on the boundary. The second derivative in (6.1)
gets approximated on Ωh using second central differences, i. e.

u′′(xi) ≈
u(xi+1)− 2u(xi) + u(xi−1)

h2
. (6.6)

Numerical solutions are real valued, discrete functions that are defined on Ω̄h and in the following
denoted as grid functions. The set of all grid functions is denoted as

Vh = {v | v : Ω̄h → R} (6.7)

and

V0,h = {v ∈ Vh | v|∂Ωh
= 0} (6.8)

the subset of Vh containing grid functions that are zero at the boundaries. As a grid function
vh ∈ Vh is specified by its values on grid points it can be represented as vector

vh = (v0, . . . , vN+1)
T := (v(x0), . . . , v(xN+1))

T ∈ R
N+2

and analogously v0,h ∈ V0,h as

v0,h = (v1, . . . , vN )T := (v(x1), . . . , v(xN ))
T ∈ R

N .

The finite difference approximation of the Dirichlet-Poisson problem can now be stated as:
Find uh = (u0, . . . , uN+1) ∈ Vh satisfying

− ui−1 − 2ui + ui+1

h2
= f(xi) i = 1, . . . , N, (6.9)

u0 = d0, (6.10)

uN+1 = d1. (6.11)

The free variables of uh are in the following denoted by u0,h = (u1, . . . , uN )T . Defining

TN :=





2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 2




∈ R

N×N , qh :=





f1 + d0

h2

f2

...

fN−1

fN + d1

h2




∈ R

N (6.12)

allows for rewriting the system (6.9)-(6.11) as a system of linear equations

Ahu0,h = qh with Ah :=
1

h2
TN . (6.13)



6.1 Initial Model Problem 69
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Figure 6.1: Equidistant grid for the one-dimensional Dirichlet-Poisson problem.

The right-hand side qh = (q1, . . . , qN )T incorporates the boundary conditions and can be defined
more formally by

qi := fi +
1

h2
(δi,1d0 + δi,Nd1). (6.14)

Convergence of the numerical solution can be guaranteed if f ∈ C2(Ω̄) (see e. g. [76]). For v ∈ Vh

the discrete sup-norm is defined by

||vh||h,∞ := max
i=0,...,N+1

|v(xi)|. (6.15)

Let u∗ and u∗
h denote exact solutions of the continuous and discretized problem respectively then

||u∗ − u∗
h||h,∞ ≤

||f ′′||∞
96

h2. (6.16)

For uh, vh ∈ Vh the inner product

(uh, vh)h := h

(
u0v0

2
+

N∑

i=1

uivi +
uN+1vN+1

2

)
(6.17)

induces a further norm on Vh, the so called energy norm

||uh||h :=
√

(uh, uh)h. (6.18)

6.1.2 Implementation Notes

In the subsequent sections solvers for Ahu0,h = qh are discussed and implementations thereof are
introduced. Grid functions are represented through objects of type DenseVector<..>with index
range 0..N+1. For the sake of simplicity the element type is fixed to double. The right-hand side
qh gets assembled by the implementations according to (6.14). Parameters expected by solvers
need to conform to the following conventions:

rh: integer containing the reciprocal of h, i. e. N + 1,

f: dense vector containing values1 (∗, f1, . . . , fN , ∗) and

u: a dense vector initialized with (d0, ∗, . . . , ∗, d1).

Function

template <typename U>

double

dp1d_normInf(const DenseVector <U> &u);

computes the discrete L∞-norm defined in (6.15) and

template <typename U>

double

dp1d_norm2Sqr(const DenseVector <U> &u);

1As in Chapter 3 arbitrary values are indicated by ∗.
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the square of the discrete L2-norm defined in (6.18).
In the context of iterative methods, computation of the residual rh := qh −Ahuh in order to

estimate the accuracy of a solution is frequently needed. Due to the special structure of Ah this
computation can be carried out without setting up the matrix explicitly:

int rhh = rh*rh; // rhh = 1/h^2

int N = rh -1;

for (int i=1; i<=N; ++i) {

r(i) = q(i) + rhh *(u(i-1) -2* u(i)+u(i+1));

}

This is realized by function2 dp1d residual(rh, f, u, r). With respect to memory consump-
tion and computational cost this is by far more efficient than setting up a banded matrix storing
Ah and computing the residual using BLAS functions. The gain in efficiency achieved by ex-
ploiting the structure of Ah and providing a dedicated implementation is notable.

Exploiting the structure of a problem is crucial for all numerical implementations. This is
taken into account in all implementations throughout this chapter:

1. Whenever there is a benefit for efficiency, algorithms are realized through single purpose
implementations that are dedicated to one particular problem. Although the same numer-
ical algorithm gets applied, different implementations are used to solve the problem in one
and more dimensions.

2. Implementations are kept independent from FLENS unless there is a true benefit in using
FLENS specific features. In this case types like DenseVector are merely used to provide
a convenient reference implementation and could easily be replaced through an external
implementation.

This sets up an empirical test case to measure the relevance of FLENS in numerical applications.

6.1.3 Relevance of FLENS

A major strength in the design of FLENS is the ability to easily define new matrix/vector types
and to allow that related linear algebra operations are evaluated through dedicated functions.
An obvious advantage is the enhanced readability of code without sacrificing efficiency. Defining
the matrix type DirichletPoisson1D allows that the expression

r = f - A*u;

gets evaluated by directly calling dp1d residual(rh, f, u, r). Defining further for grid func-
tions a dedicated type GridVector1D allows the computation of the discrete L2-norm by

alpha = sqrt(r*r);

based on a call of normL2Sqr(r).
In the remaining, implementations of DirichletPoisson1D and GridVector1D are merely

outlined. Definitions of the TypeInfo traits are completely omitted. The coefficient matrix
Ah in equation (6.13) is uniquely defined by its dimension. The corresponding FLENS type is
derived from SymmetricMatrix and merely stores an integer containing 1/h = N + 1:

1 class DirichletPoisson1D

2 : public SymmetricMatrix < DirichletPoisson1D >

3 {

4 public :

5 DirichletPoisson1D ();

6

7 DirichletPoisson1D(int _rh );

8

9 int rh;

10 };

Listing 6.1: FLENS matrix type for the coefficient matrix Ah.

2Arguments are assumed to comply with the specification defined above for the solvers.
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The vector type for grid functions encapsulates beside an integer for 1/h = N +1 a dense vector:

1 class GridVector1D

2 : public Vector <GridVector1D >

3 {

4 public :

5

6 GridVector1D(int _rh)

7 : rh(_rh), values (_(0,rh))

8 {}

9

10 // ... define operators =, +=, -=, ...

11

12 int rh;

13

14 typedef DenseVector <Array <double > > Grid;

15 Grid grid;

16 };

Listing 6.2: FLENS vector type representing grid functions Vh.

Operators treating closures are implemented according to the pattern described in Chapter 5.
Wrappers for linear algebra operations can delegate functionality to existing functions, e. g.

void

copy(const GridVector1D &x, GridVector1D &y)

{

y.rh = x.rh;

copy(x.grid , y.grid);

}

6.2 Direct Solvers

In this section so called direct solvers for (6.13) are described. For direct solvers the total number
of required operations is known a priori and only depends on the dimensions of the coefficient
matrix. In general, for an N × N coefficient matrix at least O(N3) operations are required.
Because of some special properties of the coefficient matrix Ah it is possible to provide solvers
that require much less operations. The first solver illustrated in this section is based on the
Cholesky factorization and exploits the structure of Ah. The second solver utilizes the fact that
Ah arises from the discretization of the Poisson problem and exploits the fact that properties of
the continuous problem (6.1) to (6.3) are carried over.

6.2.1 Cholesky Factorization

For the specific tridiagonal matrix TN defined in (6.12) the Cholesky factorization TN = LNDNLT
N

is explicitly known. Matrices LN and DN are given by

LN =





1

l1 1

l2
. . .

. . . 1

lN−1 1





, lk = − k

k + 1
(6.19)

and

DN = diag(d1, . . . , dN ), dk =
k + 1

k
. (6.20)

Applying the factorization to (6.13) gives

LNDNLT
Nu0,h = h2qh
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and can be solved in two steps as illustrated in Algorithm 6.1. Due to the sparsity of Lh the
computation of u0,h requires O(N) operations.

Algorithm 6.1 (Cholesky Solver: One-Dimensional Dirichlet-Poisson Problem).

1. Solve Lhv = h2qh by forward substitution:

v1 = h2q1 = h2f1 + d0, (6.21)

vk = h2qk − lk−1vk−1 = h2fk +
k − 1

k
vk−1, k = 2, . . . , N − 1, (6.22)

vN = h2qN − lN−1vN−1 = h2fN + d1 +
N − 1

N
vN−1. (6.23)

2. Solve DhLT
h u0,h = v by backward substitution.

uN =
vN

dN
=

N

N + 1
vN , (6.24)

uk =
vk − dklkuk+1

dk
=

k

k + 1
(vk + uk+1), k = N − 1, . . . , 1. (6.25)

Implementation

The forward substitution is carried out in lines 9-13. Hereby vector u sequentially gets overwritten
with v1, . . . , vN according to (6.21)-(6.23). The backward substitution (6.24)-(6.25) is realized
in lines 16-18 and overwrites u in reverse order such that in the k-th step values of v1, . . . , vk are
still contained in u(1),..,u(k).

1 template <typename F, typename U>

2 void

3 dp1d_cholesky(int rh , const DenseVector <F> &f, DenseVector <U> &u)

4 {

5 int N = rh - 1;

6 double hh = 1./( rh*rh);

7

8 // forward substitution

9 u(1) = hh*f(1)+u(0);

10 for (int k=2; k<N; ++k) {

11 u(k) = hh*f(k) + u(k -1)*(k -1)/k;

12 }

13 u(N) = hh*f(N)+u(N+1) + u(N -1)*(N -1)/N;

14

15 // backward substitution

16 u(N) = u(N)*N/(N+1);

17 for (int k=N-1; k >=1; --k) {

18 u(k) = (u(k)+u(k+1))* k/(k+1);

19 }

20 }

Listing 6.3: Direct solver for the one-dimensional Dirichlet-Poisson problem based on the
Cholesky factorization of TN .

6.2.2 Fast Poisson Solver

Eigenvalues λ1, . . . , λN and eigenvectors v1
N , . . . , vN

N of TN are explicitly known to be3

λk = 2

(
1− cos

πk

N + 1

)
, vk

N =

(
sin

π k l

N + 1

)N

l=1

. (6.26)

3Note that functions vk(x) = sin(kπx) are eigenfunctions of the Laplace operator L = ∂
∂x

fulfilling homoge-

neous boundary conditions on Ω̄, i. e. vk(0) = vk(1) = 0.
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Eigenvectors vk
N are also called the frequency modes of Ah reflecting that these are discrete sin-

functions. Denoting V = (v1
N , . . . , vN

N ) and Σ = diag(λ1, . . . , λN ) the system of linear equations
(6.13) can be factorized by

1

h2
V −1 Σ V u0,h = qh.

As TN is symmetric, its eigenvectors are orthogonal and (see [38], [52])

V −1 =
2

N + 1
V T =

2

N + 1
V.

This allows for solving the problem by computing

u0,h =
2h2

N + 1
V Σ−1 V qh. (6.27)

Although V is dense only O(N log2 N) instead of O(N2) operations are required to compute u0,h

in this particular case. This is due to the fact that the matrix-vector products involving V and
2

N+1V correspond to a Discrete Sine Transform (DST) and its inversion. Both can be computed
using the Fast Fourier Transform (FFT). The resulting Algorithm 6.2 is known as Fast Poisson
Solver and computes (6.27) in three steps.

Algorithm 6.2 (Fast Poisson Solver: One-Dimensional Dirichlet-Poisson Problem).

1. compute q̂h = V qh using a DST (O(N log2 N) operations),

2. compute q̃h = Σ−1q̂h (N operations),

3. compute u0,h = 2h2

N+1V q̃h using an inverse DST (O(N log2 N) operations).

Implementation

In the following implementation the open source library FFTW [30] is used to carry out the DSTs.
All transforms supported by the FFTW need to be performed following the same pattern.

First a so called plan needs to be created that contains all information needed by the FFTW
to compute the transform. Beside the type of transformation this includes the size of the data
and its location in memory. The algorithms used by the FFTW can be adapted to the data size
in order to improve efficiency. Therefore two options are provided for creating the plan:

1. FFTW MEASURE causes the FFTW to perform several test runs and to measure execution
times. Depending on the underlying hardware and the data size this might take a few
seconds. In order to perform this benchmarks the memory containing the data will be
overwritten.

2. FFTW ESTIMATE does not initiate any computations but the resulting plan is probably sub-
optimal.

Once a plan is created it can be executed multiple times. If the Poisson problem needs to be
solved for multiple right-hand sides it might pay off to use the FFTW MEASURE option in the
initialization. This suggests to split the implementation of the Fast Poisson Solver into two
functions. An initializer creates and returns a plan for the DST used by a second function
realizing Algorithm 6.2:

unsigned fftw_flags = FFTW_MEASURE;

fftw_plan p = dp1d_fastpoissonsolver_init (rh, u, fftw_flags );

// init u, f ...

dp1d_fastpoissonsolver (rh , p, f, u);
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Note that this implementation requires that both functions receive the same vector u. This
restriction is for the sake of simplicity and for avoiding going too much into the details of the
FFTW interface. For a more flexible implementation this restriction can easily be removed.

The FFTW library provides the function fftw plan r2r 1d to create plans for transforms
where input and output is real-valued. Together with the option FFTW RODFT00 this is used in the
function dp1d fastpoissonsolver init (Listing 6.4) to create a plan for a DST. The created
plan is defined to be an in-place transform, this means the input data will be overwritten with
the output. This allows that both transforms in Algorithm 6.2 can be realized using the same
plan.

1 template <typename U>

2 fftw_plan

3 dp1d_fastpoissonsolver_init (int rh, DenseVector <U> &u,

4 unsigned fftw_flags = FFTW_MEASURE)

5 {

6 int N = rh - 1;

7 return fftw_plan_r2r_1d(N, &u(1), &u(1), FFTW_RODFT00 , fftw_flags );

8 }

Listing 6.4: Fast Poisson Solver (Initializer)

For a realization of Algorithm 6.2 it is important to consider that the FFTW library generally
does not normalize any transform. For the DST this implies that components of vector u are
transformed according to

uk → 2

N∑

j=1

uj sin

(
π j k

N + 1

)
, k = 1, . . . , N.

Using the above notation this means that executing the transform plan will overwrite the vector
u according to

u→ 2V u.

Incorporating that characteristic of the FFTW, the following strategy is realized in the function
dp1d fastpoissonsolver (see Listing 6.5) in order to implement Algorithm 6.2:

Lines Action Result: u contains

18-20 initialization h2qh

23 execute transform 2h2q̂h

26-28 scale components of u 2h2q̃h

31 execute transform 4V h2q̃h = 2(N + 1)u0,h

32 scale u u0,h

Using other libraries to perform the DST this strategy needs to be adapted accordingly.

9 template <typename F, typename U>

10 void

11 dp1d_fastpoissonsolver (int rh , fftw_plan &plan ,

12 const DenseVector <F> &f, DenseVector <U> &u)

13 {

14 double hh = 1./( rh*rh);

15 int N = rh - 1;

16

17 // setup q from f and boundary nodes in u

18 u(_(1,N)) = hh*f(_(1,N));

19 u(1) += u(0);

20 u(N) += u(N+1);

21

22 //- step 1 -

23 fftw_execute(plan);

24
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25 //- step 2 -

26 for (int k=1; k<=N; ++k) {

27 u(k) /= 2*(1- cos(k*M_PI/(N+1)));

28 }

29

30 //- step 3 -

31 fftw_execute(plan );

32 u(_(1,N)) /= 2*(N+1);

33 }

Listing 6.5: Fast Poisson Solver for the one-dimensional Dirichlet-Poisson problem.

6.2.3 Embedding Direct Solvers into FLENS

Direct solver classes introduced in the following serve as abstractions for the above low-level
implementations. Direct solvers will play an essential role for the implementation of the multigrid
method illustrated and discussed in Section 6.4. The design of these classes is therefore focused
on their later usage as components within the multigrid method.

All direct solver classes provide the same interface such that they are exchangeable in a generic
implementation. Usage is separated into initialization and applying the underlying method:

// init solver

DirectSolver ds(A, f, u);

// apply solver

ds.solve ();

The solver object internally keeps a reference to u and f. Overwriting these vectors and reapply-
ing the solve method allows for solving the system of linear equations for multiple right-hand
sides.

Applications using a direct solver can specify the particular type of solver through appropriate
typedefs. For the Dirichlet-Poisson problem in one dimension DirectSolver for instance can be
defined as

typedef FastPoissonSolver <DirichletPoisson1D , GridVector1D > DirectSolver;

or

typedef Cholesky <DirichletPoisson1D , GridVector1D > DirectSolver;

Exemplarily for the Fast Poisson Solver Listing 6.6 shows the declaration of a direct solver class.
The class is templated with respect to matrix and vector type.

1 template <typename MatrixType , typename VectorType >

2 class FastPoissonSolver

3 {

4 public :

5 FastPoissonSolver(const MatrixType &A, const VectorType &f,

6 VectorType &_u);

7

8 void

9 solve ();

10

11 private :

12 const VectorType &f;

13 VectorType &u;

14 fftw_plan plan;

15 };

Listing 6.6: Fast Poisson Solver for the one-dimensional Dirichlet-Poisson problem.

For solving the one-dimensional Dirichlet-Poisson problem class FastPoissonSolver is special-
ized for matrix type DirichletPoisson1D and vector type GridVector1D. The constructor ini-
tializes the solver and the solve method calls the dp1d fastpoissonsolver function:
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1 template <>

2 FastPoissonSolver <DirichletPoisson1D ,

3 GridVector1D >:: FastPoissonSolver(const DirichletPoisson1D &A,

4 const GridVector1D &_f ,

5 GridVector1D &_u)

6 : f(_f), u(_u)

7 {

8 plan = dp1d_fastpoissonsolver_init (f.rh, u.grid);

9 }

10

11 template <>

12 void

13 FastPoissonSolver <DirichletPoisson1D , GridVector1D >:: solve ()

14 {

15 dp1d_fastpoissonsolver (u.rh, plan , f.grid , u.grid);

16 }

Listing 6.7: Fast Poisson Solver for the one-dimensional Dirichlet-Poisson problem.

6.3 Stationary Iterative Methods

The methods in this section are based on an additive decomposition A = L + D + R where D, L
and R represent the diagonal, strictly lower and strictly upper parts of A respectively. Initially
the methods are introduced to solve a system of linear equations

Au = q,

where A is a square matrix not necessarily related to Ah defined in (6.13).

Using an initial guess u(0) the methods produce a sequence of vectors u(1), u(2), . . . converging
to the solution if certain criterions are met. These criterions for convergence are in particular
examined for A = Ah.

6.3.1 Jacobi Method

In matrix terms the Jacobi method is given as

u(n+1) = −D−1(L + U)︸ ︷︷ ︸
=:JA

u(n) + D−1q.

Let u∗ denote the exact solution then u∗ = JAu∗ + D−1q. Hence the error after n iterations is
given as

e(n) := u∗ − u(n)

= JA

(
u∗ − u(n−1)

)
= · · · = (JA)n

(
u∗ − u(0)

)

= (JA)ne0.

As JA is symmetric the Jacobi method converges if ρ(JA) < 1, where

ρ(JA) := max{|λ| : λ eigenvalue of JA}

is the spectral radius of JA. Eigenvectors of TN and JAh
are the same and eigenvalues are related

by

λk(JAh
) = 1− λk(TN)

2
= cos

(
kπ

N + 1

)
.
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This guarantees that the Jacobi method will eventually converge. However in general, conver-
gence will be rather slow. Representing the initial error with respect to the eigenvectors, i. e. ,
e0 =

∑N
k=1 ckvk

N it follows that

e(n) =
N∑

k=1

ckλk(JAh
)nvk

N =
N∑

k=1

ck cosn

(
kπ

N + 1

)
vk

N . (6.28)

This shows that from the initial error the lowest and highest frequency modes vk
N , i. e. , when

k ≈ 1 or k ≈ N , are damped slowly by a factor close to 1. Whereas frequency modes for
k ≈ N+1

2 are damped quickly. This smoothing property is the foundation for the multigrid
method discussed in Section 6.4.

Implementation

For (6.13) the Jacobi method in component form is given as

u
(n+1)
i =

1

2

(
u

(n)
i−1 + u

(n)
i+1 + h2fi

)
, i = 1, . . . , N, (6.29)

with
u

(n)
0 := d0 and u

(n)
N+1 := d1, (6.30)

incorporating the boundary condition in each iteration according to (6.14). Due to the special

structure of Ah an implementation can overwrite u
(n)
0,h sequentially with u

(n+1)
0,h using two scalar

valued auxiliary variables:

1 template <typename F, typename U>

2 void

3 dirichlet_poisson_1d_jacobi (const DenseVector <F> &f, DenseVector <U> &u)

4 {

5 const int N = f.length ()-2;

6 const double hh = 1./((N+1)*( N+1));

7

8 double ui , ui_1 = u(0);

9 for (int i=1; i<=N; ++i) {

10 ui = u(i);

11 u(i) = 0.5*( ui_1+u(i+1)+hh*f(i));

12 ui_1 = ui;

13 }

14 }

Listing 6.8: Jacobi-iteration for the one-dimensional Dirichlet-Poisson problem.

Note that only those values of u are overwritten that are corresponding to values in the interior
of Ω. Hence it is not required to enforce boundary conditions (6.30) afterwards.

The Smoothing Property

For a vivid demonstration of the smoothing property we chose f ≡ 0 and d0 = d1 = 0 such that

u∗
h = u∗ ≡ 0 is the exact solution. Hence the error eh = u

(n)
h − u∗ coincides with the current

iteration u
(n)
h . In a first example we use as an initial guess

u
(0)
k = sin(ω1πx) + sin(ω2πx) with k1 ≈ 1 and k2 ≈

N + 1

2

consisting of two frequency modes.
Figure 6.2 shows that the higher frequency is damped after only three iterations while the

lower frequency remains almost unaffected after 20 iterations. On the other hand, Figure 6.3
shows for

u
(0)
k = sin(ω1πx) + sin(ω2πx) + sin(ω3πx) with k1 ≈ 1, k2 ≈

N + 1

2
and k3 ≈ N + 1,

that the highest frequencies are also damped very slowly.
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Figure 6.2: Jacobi method for N = 127: u(0) = v3 + v60, u(3), u(6) and u(20).
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Figure 6.3: Jacobi method for N = 127: u(0) = v3 + v60 + v123, u(3), u(6) and u(20).

6.3.2 Weighted Jacobi Method

For the multigrid method, smoothers damping the highest frequencies are desired. The weighted
Jacobi method given by

u(n+1) = ω(JAu(n) + D−1q︸ ︷︷ ︸
Jacobi method

) + (1− ω)u(n)

= (I − ωD−1A)︸ ︷︷ ︸
=:JA,ω

u(n) + ωD−1q (6.31)

is a modification to achieve this. Eigenvalues of JAh,ω and TN are related by

λk(JAh,ω) = 1− ω

2
λk(TN ) = 1− ω + ω cos

(
kπ

N + 1

)

and eigenvectors are identical. After n iterations the initial error is reduced by

e(n) =

N∑

k=1

ckλk(JAh,ω)nvk
N =

N∑

k=1

ck

(
1− ω + ω cos

(
kπ

N + 1

))n

vk
N . (6.32)

For the multigrid method introduced in Section 6.4, stationary iterative methods are used as
smoothing operators. In this respect it is favorable to choose ω such that high frequencies are
damped the fastest. This leads to

1− ω + ω cos

(
πN

N + 1

)
!≈ 0 ⇒ ω =

1

2
.

From (6.31) and (6.29) one obtains the component form of the weighted Jacobi:

u
(n+1)
i = (1− ω)u

(n)
i +

ω

2
(u

(n)
i−1 + u

(n)
i+1 + h2fi), i = 1, . . . , N.

Implementation and Demonstration of the Smoothing Property

Listing 6.9 shows a simple implementation of the weighted Jacobi method. As can be seen in
Figure 6.4 for ω = 1/2 also the highest frequency modes are damped quickly from the initial error.
Obviously the weighted Jacobi method requires two additional floating point multiplications
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Figure 6.4: Weighted Jacobi method for N = 127: u(0) = v3 + v60 + v123, u(3), u(6) and u(20)

(line 14). These additional computations are traded for enhanced smoothing properties. For
numerical applications it is interesting to investigate whether this tradeoff actually pays off. This
in turn makes it desirable that different types of smoothers can be implemented as exchangeable
components. How FLENS allows to construct such components in a straightforward manner will
be illustrated in Subsection 6.3.4.

1 template <typename F, typename U>

2 void

3 dirichlet_poisson_1d_weighted_jacobi (const double omega ,

4 const DenseVector <F> &f,

5 DenseVector <U> &u)

6 {

7 const int N = f.length ()-2;

8 const double hh = 1./((N+1)*( N+1));

9 const double c = omega /2;

10

11 double ui , ui_1 = u(0);

12 for (int i=1; i<=N; ++i) {

13 ui = u(i);

14 u(i) = (1- omega )*ui + c*( ui_1+u(i+1)+ hh*f(i));

15 ui_1 = ui;

16 }

17 }

Listing 6.9: Weighted Jacobi-iteration for the one-dimensional Dirichlet-Poisson problem.

6.3.3 Gauss-Seidel Method

In matrix terms the Gauss-Seidel method is defined by

u(n+1) = −(L + D)−1U︸ ︷︷ ︸
=:GA

u(n) + (L + D)−1q.

For A = Ah it can be shown that ρ(GA) = ρ(JA)2 such that the Gauss-Seidel method converges
twice as fast as the Jacobi method [52].

Implementation

The component form of the Gauss-Seidel method simplifies to

u
(n+1)
i =

1

2

(
u

(n+1)
i−1 + u

(n)
i+1 + h2fi

)
, i = 1, . . . , N.

As opposed to the Jacobi method the Gauss-Seidel method requires computing components of
the new iterate in a specific order.

An implementation can use the same vector to store u(n) and u(n+1). The component u
(n)
i

can be overwritten with u
(n+1)
i such that no temporary variables are needed:

1 template <typename F, typename U>

2 void
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3 dirichlet_poisson_1d_gauss_seidel (const DenseVector <F> &f, DenseVector <U> &u)

4 {

5 const int N = f.length ()-2;

6 const double hh = 1./((N+1)*(N+1));

7

8 for (int i=1; i<=N; ++i) {

9 u(i) = 0.5*( u(i -1)+u(i+1)+ hh*f(i));

10 }

11 }

Listing 6.10: Gauss-Seidel-iteration for the one-dimensional Dirichlet-Poisson problem.

6.3.4 Embedding Stationary Iterative Methods into FLENS

Reflecting the observed smoothing properties, stationary iterative methods formally can be for-
mally regarded as smoothing operators

SAh,fh
: u

(n)
h → u

(n+1)
h .

This motivates the embedding of these methods into FLENS such that it is possible to code such
smoothing operations by

Smoother S(A, f);

u = S*u;

Exemplarily an implementation of a smoother class is illustrated for the Gauss-Seidel method.
In this case the type Smoother is defined as

typedef GaussSeidel <DirichletPoisson1D , GridVector1D > Smoother ;

All smoother classes are templated with respect to the type of coefficient matrix and vector
type, such that this typedef can be exchanged in favor of another method. As can be seen
from Listing 6.11, the class GaussSeidel is a simple specialization of a FLENS matrix keeping
references to the coefficient matrix and the right-hand side vector.

12 template <typename M, typename V>

13 class GaussSeidel

14 : public GeneralMatrix <GaussSeidel <M,V> >

15 {

16 public :

17 typedef M MatrixType ;

18 typedef V VectorType ;

19

20 GaussSeidel (const M &_A, const V &_f);

21

22 const M &A;

23 const V &f;

24 };

Listing 6.11: FLENS matrix type representing the Gauss-Seidel method as smoothing operator.

Redirection of the matrix-vector multiplication to carry out an iteration of the Gauss-Seidel
method merely requires the implementation of an appropriate mv function. As Listing 6.12
shows, such an implementation basically consists of a call to the low-level implementation of the
Gauss-Seidel method from Listing 6.10.

25 void

26 mv( Transpose trans , double alpha ,

27 const GaussSeidel <DirichletPoisson1D , GridVector1D > &GS ,

28 const GridVector1D &u_1 , double beta , GridVector1D &u)

29 {

30 assert (trans == NoTrans );

31 assert (alpha ==1.);
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32 assert (beta ==0.);

33 assert (ADDRESS (u)== ADDRESS (u_1 ));

34

35 dp1d_gauss_seidel(GS.A.rh , GS.f.grid , u.grid );

36 }

Listing 6.12: Applying the Gauss-Seidel method as smoothing operator.

Unsupported operations like u = 0.7*S*u or v = S*u where u and v are intercepted by assertions
in debug mode. If desired, these kind of operations can be supported additionally in a more
flexible implementation.

Based on the above abstraction for smoothing operators class StationaryIterativeSolver
allows for using stationary iterative methods as actual solvers. The class is templated with
respect to the smoothing operator and provides the same interface for solving the system of
linear equations as classes introduced in Section 6.2:

typedef StationaryIterativeSolver <Smoother > Solver ;

Solver sv(A, f, u);

sv.solve ();

Analogously to direct solvers an object of type StationaryIterativeSolver keeps references
to the coefficient matrix, the right-hand side and the solution vector. In addition a smoothing
operator and a local vector r internally used to store the residual are allocated:

37 template <typename Method >

38 class StationaryIterativeSolver

39 {

40 public :

41 typedef typename Method :: MatrixType MatrixType ;

42 typedef typename Method :: VectorType VectorType ;

43

44 StationaryIterativeSolver (const MatrixType &A, const VectorType &f,

45 VectorType &_u);

46

47 void

48 solve ();

49

50 private :

51 Method S;

52 const MatrixType &A;

53 const VectorType &f;

54 VectorType &u, r;

55 };

Listing 6.13: Applying the Gauss-Seidel method as smoothing operator.

The solve method applies the smoothing operator until either a maximum number of iterations
is reached or the norm of the residual falls below machine accuracy:

56 template <typename Method >

57 void

58 StationaryIterativeSolver <Method >:: solve ()

59 {

60 double eps = std :: numeric_limits <double >:: epsilon ();

61 int maxIt = 500;

62

63 r = f - A*u;

64 for (int i=1; (i<= maxIt) && (normL2 (r)>eps ); ++i) {

65 u = S*u;

66 r = f - A*u;

67 }

68 }

Listing 6.14: Using the Gauss-Seidel method as solver.
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6.4 Multigrid Method

Applying the FDM to solve the Poisson problem provides an ideal example to illustrate basic
ideas and concepts of the multigrid method. In this section we use a discretization of (6.1)-(6.3)
that allows a hierarchical set of grids4

Ω̄h ⊃ Ω̄2h ⊃ Ω̄4h ⊃ · · · ⊃ Ω̄2ph. (6.33)

The multigrid method takes advantage of the smoothing properties observed in Section 6.3 for the
stationary iterative methods. The multigrid method further requires operators to approximate
grid functions on coarser and finer grids:

R2h
h : V0,h → V0,2h, P h

2h : V0,2h → V0,h

denoted as restriction and prolongation operators respectively5. A thorough and more general
study of the multigrid method is given in [12], [52] and [36].

6.4.1 Basic Idea

Assume that for (6.13) an initial guess u
(0)
0,h is given such that the error

e0,h := u∗
0,h − u

(0)
0,h = vk

N =

(
sin

(
πkl

N + 1

))N

l=1

consists of a single eigenvector of Ah. Using the Jacobi method this error would be damped after

each iteration by factor λk(JAh
) = cos

(
kπ

N+1

)
. From (6.4.1) it follows that the residual

rh = qh −Ahu
(ν)
0,h = Ahu∗

0,h −Ahu
(ν)
0,h = Ahe

(ν)
h = λk(Ah) vk

N

is a scalar multiple of vk
N . Obviously the problem (6.13) is equivalent to

Ahe0,h = rh

and solutions related by u∗
0,h = u

(0)
0,h + e0,h. As will be shown in the following, an approximate

solution of (6.4.1) can be obtained by solving

A2hu0,2h = q2h, q2h := R2h
h rh. (6.34)

Defining the restriction by taking only values of rh at grid points of Ω2h it follows that

q2h := rh|Ω2h
= λk(Ah)

(
sin

(
2πkl

N + 1

))N+1
2 −1

l=1

(6.35)

= λk(Ah)

(
sin

(
πkl

n + 1

))n

l=1

= λk(Ah)vk
n (6.36)

is a scalar multiple of the k-th eigenvector of A2h. Hence the exact solution of (6.34) is given by

u∗
0,2h =

λk(Ah)

λk(A2h)
vk

n = 4
λk(TN )

λk(Tn)
vk

n = 4
1− cos

(
πk

N+1

)

1− cos
(

πk
n+1

) vk
n = 4

sin2
(

πk
2(N+1)

)

sin2
(

πk
N+1

) vk
n

= 4
sin2

(
πkh
2

)

sin2 (πkh)
vk

n.

4In Section 7.5 the multigrid method will be applied for a non-hierarchical set of grids.
5Defining these operators on V0,h is sufficient for the methods introduced in this section. For the so called full

multigrid method these also have to be defined on Vh.
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Ωh:

Ω2h:

Ω4h:

u2 := S ν1
2 u

(0)
2

r2 := q2 −A2u2

q1 := R1
2r2

u
(0)
1 := 0, u1 = S ν1

1 u
(0)
1

r1 := q1 −A1u1

q0 := R0
1r1

u0 := A−1
0 q0

u1 := u1 + P 1
0 u0

u1 := S ν2
1 u1

u2 := u2 + P 2
1 u1

u2 := S ν2
2 u2

Figure 6.5: V-Cycle with three grids.

For k ≈ 1 it follows that u∗
0,2h ≈ vk

n such that the solution of (6.13) can be approximated by

u∗
0,h ≈ u

(0)
0,h + P h

2hu∗
0,2h.

To illustrate the basic idea of the multigrid method two observations are notable:

1. Compared to (6.13) problem (6.34) contains about half the number of unknowns.

2. Stationary methods applied to (6.34) might converge faster: Using an initial guess u
(0)
0,2h ≡ 0

the error gets damped by factor λk(JA2h
) = cos

(
kπ

n+1

)
. So in particular low frequency

modes in the error get damped faster.

Consider the numerical example where N = 127 and k = 9 such that cos
(

kπ
N+1

)
≈ 0.9757,

cos
(

kπ
n+1

)
≈ 0.9040 and 4 · sin2

(
πkh
2

)
/ sin2 (πkh) ≈ 1.0123. After 6 iterations on Ω̄2h the

error gets reduced by factor 1.0123 · 0.90406 ≈ 0.5525. On Ω̄h the same reduction requires
about 24 iterations (where each iteration requires twice as many operations).

6.4.2 Coarse Grid Correction and Multigrid V-Cycle

The idea of using the coarser grid Ω2h to improve numerical solutions on Ωh is realized in the
coarse grid correction method introduced next. The multigrid V-cycle extends this concept to
take advantage of a larger set of hierarchical grids. To allow a simpler notation let

Al = A2p−lh, ul = u0,2p−lh, ql = q2p−lh, rl = r2p−lh l = 0, . . . , p,

denote coefficient matrices, grid functions and vectors related to the different grids in (6.33).
Hence, the finest and coarsest grid is identified by l = p and l = 0 respectively. Analogously let

Rl−1
l = R2p−l2h

2p−lh , P l
l−1 = P 2p−lh

2p−l2h, Sl = SA
2p−lh

,q
2p−lh

denote restriction, prolongation and smoothing operators respectively.
The coarse grid correction performs ν1 pre-smoothing operations before solving the auxiliary

problem on the coarse grid up to machine accuracy. After updating the numerical solution on
the fine grid ν2 post-smoothing operations are applied:

Algorithm 6.3 (Coarse Grid Correction).

1. Pre-smooth initial guess: u1 := S ν1
1 u1.

2. Compute and restrict residual: r1 := q1 −A1u1, q0 := R0
1r1.
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3. ‘Solve’ on Ω2h: u0 := A−1
0 q0.

4. Update the approximation on Ωh: u1 := u1 + P 1
0 u0

5. Post-smooth: u1 := S ν2
1 u1.

Step 3 can either be carried out by using a direct solver or by applying the same method to Ω2h

and Ω4h. This leads to the multigrid V-cycle illustrated in Figure 6.5 for a set of three grids.
For a set of p grids the algorithm can be defined recursively:

Algorithm 6.4 (V-Cycle).

procedure V-Cycle(l)
if l = 0

u0 := A−1
0 q0 (solve exact)

else

ul := S ν1

l u
(0)
l

rl := ql −Alul

ql−1 := Rl−1
l rl

ul−1 := 0
call V-Cycle(l− 1)
ul := ul + P l

l−1ul−1

ul := S ν2

l ul

end if

The V-cycle gets started with l = p after initializing the initial guess up and right-hand side qp.
Only on the coarsest grid the system of linear equations is solved exactly.

For each grid level l = 0, . . . , p an implementation has to allocate vectors ul, ql, rl. For the
one-dimensional problem considered, the total amount of memory needed is O(N)6. Using one
of the stationary smoothers introduced in Section 6.3, the total number of operations performed
in one V-cycle is O(N)7.

A most notable feature of the multigrid method is that the rate of convergence can be inde-
pendent of the grid size h = 1

N+1 . For two grid levels, i. e. , p = 1 applying one V-cycle8 to the

initial guess u
(0)
1 leads to

u1 = S ν2
1

(
I − P 1

0 A−1
0 R0

1A1

)
S ν1

1︸ ︷︷ ︸
:=Mν1,ν2

u
(0)
1 + S ν2

1 P 1
0 A−1

0 R0
1q1 (6.37)

such that convergence is guaranteed if ρ (Mν1,ν2) < 1. It was shown in [36] that for certain
smoothing, restriction and prolongation operators9 the spectral radius is uniformly bound by

ρ (Mν1,ν2) ≤ Cν1+ν2 < 1

where Cν1+ν2 does not depend on h. Hence an approximate solution with accuracy ε can be
obtained after nε = O(log 1/ε) iterations. The analysis for the Dirichlet-Poisson discussed here
is rather straightforward and can easily be extended to treat the problem in higher dimensions
as long as the domains remain simple. The more general case of self-adjoint operators on general
domains was studied in [36] and [51].

6In total vectors u0, . . . , up contain
Pp

l=0

`

2−l(N + 1) − 1
´

= O(N) elements.
7On level l one smoothing operation requires is also O(2−lN).
8This is commonly denoted as Two-Grid Iteration.
9For the one-dimensional Dirichlet-Poisson problem the weighted Jacobi method with ω = 1

2
was used as

smoothing operator S1. R0
1 and P 1

0 were defined as so called weighted restriction and prolongation operators
which are both defined in the next subsection
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Figure 6.6: Weighted restriction R2h
h : V0,h → V0,2h.

6.4.3 Restriction and Prolongation Operators

In (6.35), the restriction was defined such that v = (v1, . . . , vN ) ∈ V0,h and its approximation
ṽ = (ṽ1, . . . , ṽn) ∈ V0,2h were related by

ṽi = v2i, i = 1, . . . , n.

Obviously, this type of restriction operator inherits a loss of information.

For the Dirichlet-Poisson problem better convergence rates can be obtained by using the weighted
restriction where

ṽi =
1

4
v2i−1 +

1

2
v2i +

1

4
v2i+1, i = 1, . . . , n. (6.38)

Figure 6.6 illustrates the weighted restriction for N = 7. Denoting

R =
1

4





1 2 1

1 2 1

1 2 1

. . .



 ∈ R
n×N

the weighted restriction can be expressed as ṽ = Rv. An implementation for this particular
matrix-vector product can be realized according to (6.38):

1 template <typename U, typename F, typename R>

2 void

3 dp1d_restriction(const DenseVector <V> &v, DenseVector <VC> &vc);

4 {

5 int N = rh -1;

6 for (int i=1, I=2* i; i<=N; ++i, I+=2) {

7 vc(i) = 0.25*v(I-1) + 0.5*v(I) + 0.25*v(I+1);

8 }

9 }

Listing 6.15: Weighted restriction: computing vc := Rv

A prolongation v = (v1, . . . , vN ) = P h
2h(ṽ1, . . . , ṽn) ∈ V0,2h can be obtained by using linear

interpolation, such that

v2i = ṽi, i = 1, . . . , n,

v2i+1 =
1

2
(ṽi + ṽi+1), i = 0, . . . , n.

For N = 7 the corresponding prolongation stencil is illustrated in Figure 6.7.



86 6 The Finite Difference Method (FDM) and Poisson Solvers
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Figure 6.7: Prolongation P h
2h : V0,2h → V0,h.

The prolongation can be expressed as matrix-vector product v = P ṽ where

P =
1

2





1

2

1 1

2

1 1
...





∈ R
N×n.

For the multigrid method the relevant operation is the updating of a grid function v according
to v → v + P h

2hṽ. A single purpose implementation of this operation is given by

1 template <typename VC , typename V>

2 void

3 dp1d_prolongation(const DenseVector <VC > &vc, DenseVector <V> &v)

4 {

5 int N =rh -1;

6

7 for (int i=1, I=2*i; i<=N; ++i, I+=2) {

8 v(I-1) += 0.5*vc(i);

9 v(I) += vc(i);

10 v(I+1) += 0.5*vc(i);

11 }

12 }

Listing 6.16: Prolongation and update: compute v := v + P h
2hvc where vc ∈ V0,2h and v ∈ V0,h.

6.4.4 Embedding Restriction and Prolongation Operators into FLENS

As is the case with the smoothing operators, the restriction and prolongation operators can
be realized by defining appropriate FLENS matrix types. In this case empty matrix types are
sufficient:

1 class Restriction : public GeneralMatrix <Restriction > {};

2

3 class Prolongation : public GeneralMatrix <Prolongation > {};

Listing 6.17: Restriction and Prolongation operators.

The only purpose of these types is the ability to provide mv functions delegating the operations
to appropriate low-level functions, e. g. the restriction to dp1d restriction.

1 void

2 mv( Transpose trans , double alpha , const Restriction &R,

3 const GridVector1D &v, double beta , GridVector1D &vc)

4 {

5 // assertions ...

6
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7 dp1d_restriction(v.grid , vc.grid );

8 }

Listing 6.18: Matrix-vector multiplication delegated to the restriction implementation.

Proceeding analogously for the prolongation appliance of these operators can be coded by

Restriction R;

Prolongation P;

GridVector1D v(rh), vc(rh /2);

vc = R*v;

v += P*vc;

Different types of restriction or prolongation operators can be supported by defining further
matrix types. For each new restriction or prolongation type a corresponding mv version delegates
the functionality to a specific implementation.

6.4.5 Implementation of the Multigrid V-Cycle

The most relevant components for the implementation of the multigrid method are the restric-
tion, prolongation and smoothing operators as well as a solver applied on the coarsest grid.
Abstractions made for these ingredients can be used for a generic implementation. The main
advantage of such an implementation is an enormous degree of flexibility. Listing 6.19 shows how
a particular multigrid method can be specified through a list of typedefs: For instance, in this
setup the Gauss-Seidel method is used as smoother (line 4) and the fast poisson solver applied
on the coarsest grid (line 5).

1 typedef DirichletPoisson1D MatType ;

2 typedef GridVector1D VecType ;

3

4 typedef GaussSeidel <MatType , VecType > Smoother ;

5 typedef FastPoissonSolver <MatType , VecType > SVR;

6 typedef Restriction R;

7 typedef Prolongation P;

8

9 typedef MultiGrid <MatType , VecType , R, P, Smoother , SVR > MG;

Listing 6.19: Exemplary setup of the multigrid method.

Before going into the detail of the multigrid implementation, the setup of relevant data structures
is considered in Listing 6.20. The hierarchical set of grids in (6.33) is chosen such that finest
and coarsest grids have mesh sizes h = 2−lmax and 2ph = 2−lmin respectively (lines 1-2). Vectors
representing {fl}pl=0, {rl}pl=0 and {ul}pl=0 as well as the set of coefficient matrices {Al}pl=0 are
realized through ordinary C arrays (lines 5-6). After allocation of these sets (lines 9-12) the right-
hand side fp and initial guess up are initialized for the specific Dirichlet-Poisson problem (line
15). The solver for the coarsest grid (line 17) gets passed to the multigrid implementation beside
the set of grid vectors and coefficient matrices (line 18). The V-cycle gets applied until either
a maximum number of iterations is reached or the residual has fallen below machine accuracy
(line 20-22).

1 const int lMax = 10, lMin = 2;

2 const int p = lMax -lMin;

3 const int maxIt = 20;

4

5 MatType A[p+1];

6 VecType f[p+1], r[p+1], u[p+1];

7

8 // allocate : A[l], f[l], r[l], p[l]

9 for (int l=p, rh=(1<< lMax); l>=0; --l, rh/=2) {

10 A[l] = DirichletPoisson1D(rh);

11 f[l] = r[l] = u[l] = GridVector1D(rh);
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12 }

13

14 // initialize : f[p] and initial guess u[p]

15 problemSet1 (f[p], u[p]);

16

17 SVR svr(A[0], f[0], u[0]);

18 MG mg(A, f, r, u, svr );

19

20 for (int it=1; (it <= maxIt) && (normL2 (r[p])> eps ); ++it) {

21 mg.vCycle (p, 1, 1);

22 }

Listing 6.20: Exemplary setup of the multigrid method.

The multigrid method is implemented following a similar approach used for the direct solvers in
Section 6.2.3 and the stationary solvers in Section 6.3.4. Required data structures are passed to
the constructor of the multigrid class

MG mg(A, f, r, u, svr );

and referenced by the multigrid object. This simply makes these structures available to the
vCycle method according to an internally specified naming convention. Due to the FLENS
embedding of relevant operators the V-cycle can be implemented using a syntax that directly
reflects the pseudo code in Algorithm 6.4:

1 template <typename Mat , typename Vec , typename Res , typename Pro ,

2 typename S, typename SVR >

3 void

4 MultiGrid <Mat , Vec , Res , Pro , S, SVR >:: vCycle (int l, int v1 , int v2)

5 {

6 if (l==0) {

7 svr .solve ();

8 } else {

9 for (int v=1; v<=v1; ++v) {

10 u[l] = S(A[l],f[l])* u[l];

11 }

12 r[l] = f[l] - A[l]*u[l];

13 f[l-1] = R*r[l];

14

15 u[l-1] = 0;

16 vCycle (l-1,v1 ,v2);

17

18 u[l] += P*u[l -1];

19 for (int v=1; v<=v2; ++v) {

20 u[l] = S(A[l],f[l])* u[l];

21 }

22 }

23 }

Listing 6.21: FLENS implementation of the multigrid V-cycle.

The ability of exchanging solver, smoother, restriction and prolongation is one obvious advantage
achieved by this concept. Due to the technique realized in FLENS for the evaluation of linear
algebra expressions the above implementation of the V-cycle is equivalent in terms of efficiency
to an implementation that directly calls the low-level functions. A further benefit is shown
in the next section where the very same implementation of the V-cycle is used to solve the
Dirichlet-Poisson problem in higher dimensions.
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Figure 6.8: Equidistant grid Ω̄ for the two-dimensional Dirichlet-Poisson problem and the five-
point stencil for the approximation of uxx + uyy at (xi, yj).

6.5 The Dirichlet-Poisson Problem in Two Dimensions

In this section numerical methods introduced in Sections 6.2 to 6.4 are adapted to solve the
two-dimensional Dirichlet-Poisson problem

− uxx − uyy = f in Ω, (6.39)

u = d on ∂Ω. (6.40)

on domain Ω = (0, 1)2. The FDM will be applied on the equidistant grid (Figure 6.8)

Ω̄h = {(xi, yi) = (ih, jh) : i = 0, . . . , N + 1, j = 0, . . . , N + 1}, h =
1

N + 1
, (6.41)

with interior grid points

Ωh = {(xi, yi) = (ih, jh) : i = 1, . . . , N, j = 1, . . . , N}. (6.42)

Let Vh and V0,h denote sets of grid functions as specified in (6.7) and (6.8) respectively. Replacing
on Ω̄h the partial derivatives in (6.39) with second order central differences leads to the finite
difference approximation of problem (6.39)-(6.40):

Find uh ∈ Vh satisfying

− ui−1,j − 2ui,j + ui+1,j

h2
− ui,j−1 − 2ui,j + ui,j+1

h2
= fi,j i, j ∈ {1, . . . , N}, (6.43)

ui,j = di,j i or j ∈ {0, N + 1}. (6.44)

Numbering the grid points Ω̄h allows for representing of grid functions as vectors. Specifying a
row-wise numbering a grid function vh ∈ Vh can be represented as

vh = (v0,0, . . . , vN+1,0, v0,1, . . . )
T = (v(x0, y0), . . . , v(xN+1, y0), v(x0, y1), . . . )

T ∈ R
(N+1)2

and v0,h ∈ V0,h as vector

v0,h = (v1,1, . . . , vN,1, v1,2, . . . )
T = (v(x1, y1), . . . , v(xN , y1), v(x1, y2), . . . )

T ∈ R
N2

.
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For this row-wise numbering system (6.43)-(6.44) is equivalent to

Ahu0,h = qh (6.45)

with coefficient matrix

Ah :=
1

h2





TN + 2I −I

−I TN + 2I −I
. . .

. . .
. . .

−I TN + 2I −I

−I TN + 2I




∈ R

N2×N2

(6.46)

and right-hand side qh = (q1,1, . . . , qN,1, q1,2, . . . )
T ∈ R

N2

defined through

qi,j := fi,j +
1

h2
(δi,1d0,j + δi,NdN+1,j + δj,1di,0 + δj,Ndi,N+1). (6.47)

Analogously to the one-dimensional problem two norms on Vh are defined by

||vh||h,∞ := max
i,j
|vi,j | (6.48)

and

||vh||h := h




∑

i,j

ci,j (vi,j)
2




1/2

where ci,j =

{
1 if i, j ∈ {1, . . . , N},
1
2 else.

(6.49)

6.5.1 Implementation Notes

By numbering grid points, a grid function can be formally treated as a vector. Independent
of the problem dimensions this allows for rewriting the finite difference approximation of the
Dirichlet-Poisson problem as a system of linear equations. For a general numerical analysis this
is a crucial point. However, for the numerical realization fast access to values at grid points is
crucial. For instance, the residual rh = qh −Ahu0,h can be computed efficiently by

for (int i=1; i<=N; ++i) {

for (int j=1; j<=N; ++j) {

r(i,j) = f(i,j)-rhh *(4*u(i,j)-u(i-1,j)-u(i+1,j)-u(i,j-1)-u(i,j+1));

}

}

Listing 6.22 shows how the theoretical and practical aspects can be combined using FLENS. The
formal treatment of grid functions as vectors is reflected by deriving class GridVector2D from
base class Vector. Values at grid points are internally stored in a matrix to provide fast access.

1 class GridVector2D

2 : public Vector <GridVector2D >

3 {

4 public :

5 typedef GeMatrix <FullStorage <double , RowMajor > > Grid;

6

7 GridVector2D(int _rh );

8

9 // operators =, +=, -=, *=

10

11 int rh;

12 Grid grid;

13 };

Listing 6.22: Grid functions on two-dimensional domains.
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Numerical computations can be carried out by low-level implementations receiving the grid
function values stored in a matrix. For example, the function

template <typename U, typename F, typename R>

void

dp2d_residual(int rh, const GeMatrix <F> &f, const GeMatrix <U> &u,

GeMatrix <R> &r);

can compute the residual on grid points as shown above. Defining a matrix type10 for the
coefficient matrix in (7.49) the residual can be computed in a high-level implementation by

DirichletPoisson2D A(rh);

GridVector2D r(rh), f(rh), u(rh);

// ...

r = f - A*u;

This shows that theoretical and practical aspects are combined orthogonally. Implementations
that only rely on mathematical properties are not affected by decisions made regarding efficiency.

6.5.2 Direct Solvers

Direct solvers for the two-dimensional Dirichlet-Poisson problem are accessible through the same
uniform interface provided for the one-dimensional problem:

DirichletPoisson2D A;

GridVector2D f(rh), u(rh);

// init f, u

DirectSolver ds(A, f, u);

ds.solve ();

Typedef DirectSolver can either be defined as

FastPoissonSolver <DirichletPoisson2D , GridVector2D > DirectSolver;

or

Cholesky <DirichletPoisson2D , GridVector2D > DirectSolver;

Both solvers embed low-level implementations that exploit the structure and special properties
of the coefficient matrix Ah.

Cholesky Factorization

As can be seen from (7.49) in two dimensions the coefficient matrix Ah is a banded matrix with
N sub- and super-diagonals respectively. For the Cholesky factorization Ah = LhDhLT

h it follows
that Lh is a lower triangular matrix with N sub-diagonals. However, while Ah is sparse — with
at most five non-zero entries per row — all sub-diagonals of Lh are fully occupied.

As can be inferred from Section 3.4.2 the number of operations required to perform the
Cholesky factorization of Ah is O(N4). Forward and backward substitution require O(N3)
operations each.

A solver using the Cholesky factorization can be implemented using the LAPACK functions
pbtrf and pbtrs. Function pbtrf overwrites a matrix of type SbMatrix with its Cholesky
factorization. Subsequently pbtrs can be used to solve the system of linear equations. Functions
dp2d cholesky init and dp2d cholesky are realized using these LAPACK functions:

1 template <typename A>

2 void

3 dp2d_cholesky_init(int rh , SbMatrix <A> &A);

4

10Class DirichletPoisson2D can be implemented analogously to class DirichletPoisson1D.
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5 template <typename A, typename F, typename U>

6 void

7 dp2d_cholesky(int rh , const SbMatrix <A> &A, const GeMatrix <F> &F,

8 GeMatrix <U> &U);

Listing 6.23: Solver for the two-dimensional Dirichlet-Poisson problem based on the Cholesky
factorization.

Fast Poisson Solver

The system of linear equations (6.45) is equivalent to the matrix equation

UTN + TNU = h2Q where U = (ui,j)i,j=1,...N , Q = (qi,j)i,j=1,...N . (6.50)

To show this equivalence let

A⊗B =




a1,1B . . . a1,nB

...
. . .

...

am,1B . . . am,nB



 ∈ R
mp×nq

denote the Kronecker product for matrices A ∈ R
m×n and B ∈ R

p×q. Then

Ah = I ⊗ TN + TN ⊗ I =




TN

TN

. . .



+





2I −I

−I 2I
. . .

. . .
. . .



 .

Related to the Kronecker product is the so called Vec operator, in the following defined as

Vec : R
m×n → R

mn, Vec(A) :=





aT

1

aT
2

...

aT

m




ak = (ak,1, . . . , ak,n).

Operator Vec stacks the rows of a matrix. This conforms to the numbering chosen above to
represent grid functions as vectors, such that

Vec(U) = u0,h.

The equivalence of (6.45) and (6.50) follows from the equivalence (see [32])

AXB = C ⇐⇒ (A⊗BT )Vec(X) = Vec(C).

Applying the factorization TN = V −1ΣV to (6.50)

UTN + TNU = h2Q ⇔ UV −1ΣV + V −1ΣV U = h2Q

⇔ V UV −1Σ + ΣV UV −1 = h2V QV −1

⇔ ÛΣ + ΣÛ = h2Q̂, Û = V UV −1, Q̂ = V QV −1

allows for stating the following Algorithm 6.5 for the computation of U .

Algorithm 6.5 (Fast Poisson Solver: Two-Dimensional Dirichlet-Poisson Problem).
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1. Compute Q̂ = V QV −1 = 2
N+1V QV :

Components of Q̂ = (q̂i,j) are determined by

q̂i,j =
2

N + 1

N∑

k=1

N∑

l=1

qi,j sin

(
ikπ

N + 1

)
sin

(
jlπ

N + 1

)
.

This corresponds to a two-dimensional DST of Q and can be computed with O(N2 log N)
operations.

2. Solve ÛΣ + ΣÛ = h2Q̂:
Components of Û = (ûi,j) can be computed by

ûi,j =
q̂i,j

(λi + λj)
=

q̂i,j(
2− 2 cos

(
iπ

N+1

))
+
(
2− 2 cos

(
jπ

N+1

))

in N2 operations.

3. Compute U = V −1ÛV = 2
N+1V UV :

Again the solution can be obtained through a two-dimensional DST in O(N2 log N) opera-
tions as

ui,j =
2

N + 1

N∑

k=1

N∑

l=1

ûi,j sin

(
ikπ

N + 1

)
sin

(
jlπ

N + 1

)
.

Using the two-dimensional DST provided by the FFTW library the Fast Poisson Solver is im-
plemented by functions:

1 template <typename U>

2 fftw_plan

3 dp2d_fastpoissonsolver_init (int rh, GeMatrix <U> &u,

4 unsigned fftw_flags = FFTW_ESTIMATE);

5

6 template <typename F, typename U>

7 void

8 dp2d_fastpoissonsolver (int rh , fftw_plan &plan ,

9 const GeMatrix <F> &f, GeMatrix <U> &u);

Listing 6.24: Fast Poisson Solver for the two-dimensional Dirichlet-Poisson problem.

Like for the one-dimensional Fast Poisson Solver one has to take into account that the FFTW
does not apply any scaling on the transform. Therefore Algorithm 6.5 needs to be adapted
accordingly. Details about scaling factors can be found in the FFTW documentation[30].

6.5.3 Stationary Iterative Methods

Low-level implementations of the stationary iterative methods are embedded into FLENS follow-
ing the same pattern illustrated in Section 6.3.4. This allows that each low-level implementation
is immediately available as a building block for the multigrid method on an abstract level: For
instance, as a smoother

Smoother S(A, f);

u = S*u;

or as a solver

typedef StationaryIterativeSolver <Smoother > Solver ;

Solver svr (A, f, u);

svr.solve ();

What concrete method gets applied can be specified through typedefs: For instance, the Gauss-
Seidel method by

typedef GaussSeidel <DirichletPoisson2D , GridVector2D > Smoother ;
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Jacobi: u
(n+1)
i,j = 1

4

(
u

(n)
i−1,j + u

(n)
i+1,j + u

(n)
i,j−1 + u

(n)
i,j+1 + h2fi,j

)

Weighted Jacobi: u
(n+1)
i,j = (1− ω)u

(n)
i,j + ω

4 (u
(n)
i−1,j + u

(n)
i+1,j + u

(n)
i,j−1 + u

(n)
i,j+1 + h2fi,j

)

Gauss-Seidel: u
(n+1)
i,j = 1

4

(
u

(n+1)
i−1,j + u

(n)
i+1,j + u

(n+1)
i,j−1 + u

(n)
i,j+1 + h2fi,j

)

Table 6.1: Stationary iterative methods for the two-dimensional Dirichlet-Poisson problem.

Jacobi and Gauss-Seidel Method

From the representation of Ah given in (6.5.2) it follows that eigenvectors and eigenvalues are
related to TN . Let λ1, . . . , λN and v1, . . . , vN denote eigenvalues and vectors of TN respectively,
then

h2AhVec(vkvT
l ) = Vec

(
vkvT

l TN + TNvkvT
l

)
= Vec

(
λlvkvT

l + λkvkvT
l

)

= (λl + λk)Vec
(
vkvT

l

)
.

Convergence of the Gauss-Seidel method is therefore guaranteed since Ah is positive definite.
For the Jacobi method it follows that eigenvectors of JAh

are Vec(vkvT
l ) and corresponding

eigenvalues are given by

λk,l(JAh
) = 1− λk,l(h

2Ah)

4
= 1− λl + λk

4
=

1

2

(
cos

(
lπ

N + 1

)
+ cos

(
kπ

N + 1

))
.

Therefore smoothing properties observed in Section 6.3.1 can be shown analogously for the two-
dimensional case. Table 6.1 summarizes methods introduced in Section 6.3 in component form.
These representations easily allow to derive implementations adapted to the two-dimensional
Poisson problem. An implementation of the Gauss-Seidel method is given in Listing 6.25.

1 template <typename F, typename U>

2 void

3 dp2d_gauss_seidel(int rh , const GeMatrix <F> &f, GeMatrix <U> &u)

4 {

5 int N = rh -1;

6 int rhh = rh*rh;

7 double hh = 1./ rhh;

8

9 for (int i=1; i<=N; ++i) {

10 for (int j=1; j<=N; ++j) {

11 u(i,j) = 0.25*( u(i-1,j)+u(i+1,j)+u(i,j -1)+u(i,j+1)+ hh*f(i,j));

12 }

13 }

14 }

Listing 6.25: Gauss-Seidel-iteration for the two-dimensional Dirichlet-Poisson problem.

Red-Black Gauss-Seidel

As can be seen in Table 6.1 the Gauss-Seidel method requires to compute new components of
the iterate in the same order grid points were numbered. Choosing a different numbering scheme
leads to variants like the red-black Gauss-Seidel method introduced in the following. Figure 6.9
illustrates a grid colored with alternate red and black points. This coloring scheme can be
specified by:

Denote grid point (xi, yj) as

{
‘red’ if i + j even,

‘black’ else.
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Figure 6.9: Red-Black ordering on Ω̄h.

Numbering red points first and black points subsequently the component form of the Gauss-Seidel
method changes to

u
(n+1)
i,j =






1
4

(
u

(n)
i−1,j + u

(n)
i+1,j + u

(n)
i,j−1 + u

(n)
i,j+1 + h2fi,j

)
, if i + j even,

1
4

(
u

(n+1)
i−1,j + u

(n+1)
i+1,j + u

(n+1)
i,j−1 + u

(n+1)
i,j+1 + h2fi,j

)
, else.

This is implemented in two separate functions that need to be called consecutively. If this should
be inconvenient a third function could bundle these calls. However splitting the functionality
for the implementation provides a flexibility that simplifies parallelization as shown in the next
section. Function dp2d gauss seidel red in Listing 6.26 computes new components at all red
points. Obviously these ‘red components’ can be computed in arbitrary order. This allows
for a simple implementation using two for-loop blocks (lines 9-13 and 14-18). Each block uses
increments of two but different starting points:

1 template <typename F, typename U>

2 void

3 dp2d_gauss_seidel_red (int rh , const GeMatrix <F> &f, GeMatrix <U> &u)

4 {

5 int N = rh -1;

6 int rhh = rh*rh;

7 double hh = 1./ rhh ;

8

9 // iterate over red points

10 for (int i=1; i<=N; i+=2) {

11 for (int j=1; j<=N; j+=2) {

12 u(i,j) = 0.25*( u(i-1,j)+u(i+1,j)+u(i,j-1)+u(i,j+1)+hh*f(i,j));

13 }

14 }

15 for (int i=2; i<=N; i+=2) {

16 for (int j=2; j<=N; j+=2) {

17 u(i,j) = 0.25*( u(i-1,j)+u(i+1,j)+u(i,j-1)+u(i,j+1)+hh*f(i,j));

18 }

19 }

20 }

Listing 6.26: Red-Black Gauss-Seidel-iteration for the two-dimensional Dirichlet-Poisson prob-
lem.

Analogously function dp2d gauss seidel black treats black points.
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Parallelization of the Gauss-Seidel method is a major application for the red-black variant.
On a multiprocessor system with shared memory this is obvious. As components at red points
can be updated in an arbitrary order this can be done in parallel and subsequently components
at black points. For systems with distributed memory parallelization can be achieved by domain
decomposition as discussed in Section 6.6. A further notable property of this method is that the
residual vanishes at the black points. Using the red-black numbering the system (6.43)-(6.44)
can be rewritten as (

Dr Er,b

Eb,r Db

)(
ur

ub

)
=

(
qr

qb

)
. (6.51)

with diagonal matrices Dr and Db. The Gauss-Seidel method in matrix form is then given by

u(n+1)
r = D−1

r

(
qr − Er,bu

(n)
b

)
, (6.52)

u
(n+1)
b = D−1

b

(
qb − Eb,ru

(n+1)
r

)
. (6.53)

For the residual at black points it follows that

r
(n+1)
b = qb − Eb,ru

(n+1)
r −Dbu

(n+1)
b

= qb − Eb,rD
−1
r

(
qr − Er,bu

(n)
b

)
−DbD

−1
b

(
qb − Eb,ru

(n+1)
r

)

= −Eb,rD
−1
r

(
qr − Er,bu

(n)
b

)
+ Eb,ru

(n+1)
r

= −Eb,rD
−1
r

(
qr − Er,bu

(n)
b

)
+ Eb,rD

−1
r

(
qr − Er,bu

(n)
b

)
= 0.

A dedicated function dp2d residual red computing the residual only on red points can take
advantage of this.

6.5.4 Multigrid Method

Components that remain to be provided for the multigrid method are restriction and prolongation
operators. These are provided in the following form:

Restriction R;

Prolonagtion P;

GridVector2D v(rh), vc(rh /2);

vc = R*v;

v += P*vc;

Different variants of restriction and prolongation can be provided through additional classes in
a straightforward manner.

Prolongation Operator

Using linear interpolation, the prolongation vh = P ṽ2h is defined by

v2i,2j := ṽi,j 1 ≤ i, j ≤ n = 1
2h − 1,

v2i+1,2j := 1
2 (ṽi,j + ṽi+1,j) 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n,

v2i,2j+1 := 1
2 (ṽi,j + ṽi,j+1) 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1,

v2i+1,2j+1 := 1
4 (ṽi,j + ṽi+1,j+1) 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1.

For the update operation vh → vh +P h
2hṽ2h the contributions of ṽi,j to values of vh are illustrated

in Figure 6.10. An implementation based on this stencil for the prolongation operator is shown
in Listing 6.27.
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Figure 6.10: Stencils for the prolongation. The red node in the middle contributes to circled
nodes on the fine grid.

1 template <typename VC, typename V>

2 void

3 dp2d_prolongation(const GeMatrix <VC> &vc , GeMatrix <V> &v)

4 {

5 int N = vc.lastRow ()-1;

6 for (int i=1, I=2; i<=N; ++i, I+=2) {

7 for (int j=1, J=2; j<=N; ++j, J+=2) {

8 v(I-1,J -1)+=.25* vc(i,j); v(I-1,J)+=.5* vc(i,j); v(I-1,J +1)+=.25* vc(i,j);

9 v(I ,J -1)+=.50* vc(i,j); v(I ,J)+= vc(i,j); v(I ,J +1)+=.50* vc(i,j);

10 v(I+1,J -1)+=.25* vc(i,j); v(I+1,J)+=.5* vc(i,j); v(I+1,J +1)+=.25* vc(i,j);

11 }

12 }

13 }

Listing 6.27: Prolongation in two dimensions.

Restriction Operators

The simplest form of restriction ṽ2h = R2h
h vh is defined by the injection

ṽi,j = v2i,2j , 1 ≤ i, j ≤ n =
1

2h
− 1.

Weighting the restriction according to

ṽi,j =
1

8
(4v2i,2j + v2i+1,2j + v2i−1,2j + v2i,2j+1 + v2i,2j−1), 1 ≤ i, j ≤ n,

is denoted as half-weighted restriction. This term reflects that only four neighboring points of
(x2i, y2j) contribute to ṽi,j as illustrated in Figure 6.11. A simple implementation of the half-
weighted restriction is shown in Listing 6.28.

1 template <typename U, typename F, typename R>

2 void

3 dp2d_restriction_hw (const GeMatrix <V> &v, GeMatrix <VC> &vc)

4 {

5 int N = vc.lastRow ()-1;

6 for (int i=1, I=2; i<=N; ++i, I+=2) {

7 for (int j=1, J=2; j<=N; ++j, J+=2) {

8 vc(i,j) = (4*v(I,J)+v(I-1,J)+v(I,J -1)+v(I,J+1)+v(I+1,J))/8;

9 }

10 }

11 }

Listing 6.28: Half-weighted restriction in two dimensions.
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Figure 6.11: Stencils for the half-weighted restriction (left) and the full-weighted restriction
(right). Circled nodes on the fine grid contribute to the red node in the middle.

Taking all eight neighboring points into account leads to the full-weighted restriction (Figure 6.11)
defined by

ṽi,j = 1
16

(
4v2i,2j

+2(v2i+1,2j + v2i−1,2j + v2i,2j+1 + v2i,2j−1)

+v2i+1,2j+1 + v2i−1,2j+1 + v2i+1,2j−1 + v2i−1,2j−1

)
, 1 ≤ i, j ≤ n.

Usually better convergence rates are achieved through the full-weighted restriction but requires
more floating point operations. Using the red-black Gauss-Seidel method as smoother no ad-
ditional operations are required compared to the half-weighted restrictions. Adapted imple-
mentations can take into account that the residual vanishes on black points after a smoothing
operation.

6.6 Parallel Implementation of the Multigrid Method

This section describes the parallel implementation of the multigrid method on a cluster, that is,
a group of computers interconnected via network. Each computer (in the following denoted as
processor node or simply processor) in the cluster has its own memory and one or more proces-
sors. Up-to-date benchmarks demonstrating the scalability of the introduced parallel multigrid
implementation can be found on the FLENS website [45].

The parallel implementation uses the Single Program, Multiple Data (SPMD) technique. Data
interchanges between processor nodes are provided by the network. This data communication
between these nodes is organized using the Message Passing Interface (MPI). A kind introduction
and comprehensive reference of MPI is given in [35]. Concepts for the realization of parallel
numerical algorithms are illustrated in much more detail in [2] and [67].

6.6.1 Processor Topology and Domain Decomposition

Domain Ω is decomposed and distributed across p = p1p2 processor nodes arranged in an p1×p2

Cartesian topology. To be more precise, the domain gets subdivided into local domains

Ω(k,l) = Ω ∩
[

k

p1
,
k + 1

p1

)
×
[

l

p2
,
l + 1

p2

)
, 0 ≤ k < p1, 0 ≤ l < p2. (6.54)

and processor node (k, l) computes the unknowns on the local grid points

Ω
(k,l)
h = Ω(k,l) ∩ Ωh. (6.55)
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Figure 6.12: Decomposition of Ωh into the four subdomains Ω(0,0) (shaded gray), Ω(1,0), Ω(0,1)

and Ω(1,1). Symbols ●, ❍, � and � indicate unknowns assigned to the different processes.

For N + 1 = 8 and p1 = p2 = 2 Figure 6.12 illustrates the subdivision and indicates how grid
points are assigned to different processor nodes. In the following it is assumed that the number
of available processors are of the form p1 = 2l1 , p2 = 2l2 and the grid size h chosen such that
N + 1 = 2L where l1, l2 ≤ L. Local grid points assigned to process node (k, l) are then given by

Ω
(k,l)
h =

{(
k

p1
+ ih,

l

p2
+ jh

) ∣∣∣∣ i = δk,0, . . . ,
N + 1

p1
− 1, j = δl,0, . . . ,

N + 1

p2
− 1

}
. (6.56)

6.6.2 Local Grids with Ghost Nodes

Assume that the red-black Gauss-Seidel method is used as smoother in the multigrid method.
Due to the structure of Ah, updating the iterate at the grid point (xi, yi) requires that values on
the grid points

N5(i, j) = {(xi, yj), (xi+1, yj), (xi−1, yj), (xi, xj+1), (xi, yj−1)}

are available. The prolongation vh = P h
2hṽ2h requires for the computation of vi,j that values of

ṽ2h are available on grid points

N9(i, j) = N5(i, j) ∩ {(xi+1, yj+1), (xi−1, yj+1), (i− 1, j + 1), (i− 1, j − 1)}.

The same applies to the full-weighted restriction. Hence the computation of unknowns on Ω
(k,l)
h

requires that process node (k, l) has read access to additional nodes that are assigned to different
local grids. These additional nodes are denoted as ghost nodes. For a subdivision into four local
grids Figure 6.13 illustrates ghost nodes needed by each processor. Local grids extended by
required ghost nodes are formally specified by

Ω̂
(k,l)
h =

{(
k

p1
+ ih,

l

p2
+ jh

) ∣∣∣∣ i = i
(k)
0 , . . . , i

(k)
1 , j = j

(l)
0 , . . . , j

(l)
1

}
, (6.57)

where

i
(k)
0 = δk,0 − 1, i

(k)
1 =

N + 1

p1
− δk,N+1, (6.58)

and

j
(k)
0 = δl,0 − 1, j

(l)
1 =

N + 1

p2
− δl,N+1. (6.59)
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Figure 6.13: Decomposition of Ωh. Ghost nodes required on local grids are indicated by grayed
out nodes.

In each read access to a ghost node it has to be guaranteed that the value coincides with that
of the original node. This requires communication between the processors in the form of data
exchange. For parallel implementations the overhead due to interprocess communication is a
crucial issue with respect to scalability. Obviously the amount of overhead not only depends
on the amount of data that needs to be send and received. But it also depends on the number
of processors involved in updating ghost nodes of a particular local grid. As can be seen from
Figure 6.13 process node (k, l) needs to receive values on ghost nodes from five processors11:

Ghost nodes of process node (k, l) receive update from process node

(xi0+1, yj0) , . . . , (xi1−1, yj0) south process node: (k, l − 1)

(xi0+1, yj1) , . . . , (xi1−1, yj1) north process node: (k, l + 1)

(xi0 , yj0+1) , . . . , (xi0 , yj1−1) west process node: (k − 1, l)

(xi1 , yj0+1) , . . . , (xi1 , yj1−1) east process node: (k + 1, l)

(xi1 , yj1) north-east process node: (k + 1, l + 1)

Direct communication with the north-east process node (k + 1, l + 1) for a single value can
be avoided. Note that ghost node (xi1 , yj1) on processor (k, l) as well as ghost node (xi0+1, yj1)
on processor (k +1, l) refer both to the same grid point (xi0 , yj0) on processor (k +1, l +1). This
suggests that processor (k, l) receives this ghost node indirectly from the east process node as
shown in Table 6.2. Complementary Table 6.3 lists what each process node needs to send in this
case.
In general a guarantee that process (k, l) receives the correct value from (k + 1, l + 1) requires a
strict coordination of the interprocess communication. Processor (k + 1, l) first needs to receive
the value from (k + 1, l + 1) before sending it to processor (k, l). Such a synchronization in turn
can have a notable negative impact on performance.

However, for the parallel implementation of the multigrid this type of synchronization can be
avoided in some cases. Using a smoother like the red-black Gauss-Seidel method in each iteration

11Cases where process nodes do not exist in certain directions are ignored. Indices i0, i1, j0, j1 refer to the local

grid Ω̂
(k,l)
h

.
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Ghost nodes of process node (k, l) receive update from process node

(xi0+1, yj0) , . . . , (xi1−1, yj0) south process node: (k, l − 1)

(xi0+1, yj1) , . . . , (xi1−1, yj1) north process node: (k, l + 1)

(xi0 , yj0+1) , . . . , (xi0 , yj1−1) west process node: (k − 1, l)

(xi1 , yj0+1) , . . . , (xi1 , yj1−1) , (xi1 , yj1) east process node: (k + 1, l)

Table 6.2: Receiving updates of ghost nodes.

From process node (k, l) send values on grid points receiving process node

(xi0+1, yj0+1) , . . . , (xi1−1, yj0+1) south process node: (k, l − 1)

(xi0+1, yj1−1) , . . . , (xi1−1, yj1−1) north process node: (k, l + 1)

(xi0+1, yj0+1) , . . . , (xi0+1, yj1−1) , (xi0+1, yj1) west process node: (k − 1, l)

(xi1−1, yj0+1) , . . . , (xi1−1, yj1−1) east process node: (k + 1, l)

Table 6.3: Sending updates of boundary nodes.

ghost nodes need to be updated twice. Without synchronization updating the ghost points twice
guarantees that process (k, l) has received the correct value. Further, the only operations that
require an up-to-date value in (xi1 , yj1) are the restriction and prolongation operators that are
performed after a smoothing step.

6.6.3 Implementation of a Distributed Grid Vector

Using the MPI library process nodes are identified by ranks, which are integers within the range
from 0 to p− 1. Processors can be organized logically in a p1 × p2 Cartesian topology using the
MPI functions MPI Cart create, MPI Cart coords and MPI Cart shift. Listing 6.29 shows the
wrapper class MpiCart hiding the technical details.

1 enum CartDir { North =0, East=1, South =2, West =3 };

2

3 class MpiCart

4 {

5 public :

6 MpiCart ();

7

8 MpiCart (int argc , char ** argv);

9

10 MpiCart (const MpiCart &rhs );

11

12 MPI :: Cartcomm comm;

13 int numRows , numCols ;

14 int row , col;

15 int neighbors [4];

16 };

Listing 6.29: Abstraction of the Cartesian processor topology.

The meaning of the member variables is described in Table 6.4.

The number of total process nodes and the logical layout of the processor grid can be specified
through parameters on the command line, e.g.

mpirun -np 32 ./ myApp 4 8
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comm MPI communication object used for interprocess communication.
(row, col) Position within the processor topology. row and col are within

the range 0, . . . , p1 − 1 and 0, . . . , p2 − 1 respectively.
numRows, numCols Number of rows and columns in the processor grid, i. e. p1 and p2

respectively.
neighbors Ranks of neighboring process nodes. E. g. neighbors[East] is

the rank of the east node.

Table 6.4: Attributes of MpiCart objects.

starts the application myApp on 32 process nodes organized in a 4× 8 grid. Arguments from the
command line are handled during the construction of the MpiCart object. The MpiCart object
needs to be created before any other MPI function gets called:

int

main(int argc , char **argv)

{

MpiCart mpiCart (argc , argv);

// ..

}

Class DistributedGridVector2D shown in Listing 6.32 implements grid functions with values

distributed across a processor grid. Each instance holds values on a local grid Ω̂
(k,l)
h defined in

(6.57). These values are stored in a local matrix grid. For a simple and efficient implementation
it is of advantage that all local grid matrices have the same size independent of the process
node. Therefore the index range of grid is always [−1, . . . , (N + 1)/p1]× [−1, . . . , (N + 1)/p2].

Values on Ω̂
(k,l)
h are stored in the sub-matrix indexed by [i0, . . . , i1] × [j0, . . . , j1] where i0, i1

and j0, j1 are initialized according to (6.58) and (6.59) respectively. An instance of mpiCart is
used for the interprocess communication. Method setGhostNodes updates the ghost nodes and
uses therefore the user defined MPI data types MpiRow and MpiCol. The technique realized for
updating ghost nodes is described in more detail below.

1 class DistributedGridVector2D

2 : public Vector < DistributedGridVector2D >

3 {

4 public :

5 typedef GeMatrix <FullStorage <double , RowMajor > > Grid;

6

7 DistributedGridVector2D (const MpiCart &_mpiCart , int rh);

8

9 // ...

10

11 void

12 setGhostNodes();

13

14 MpiCart mpiCart ;

15 int rh , N;

16 int i0 , i1 , j0, j1;

17 Grid grid;

18 MPI :: Datatype MpiRow , MpiCol ;

19 };

Listing 6.30: Grid vector distributed accross the processor grid.

Data exchange between west and east process nodes is illustrated in Figure 6.14 and between
north and south nodes in Figure 6.15. Comparing these figures with Table 6.3 and Table 6.2
obviously more data gets exchanged than actually required. With respect to performance this
is negligible but simplifies the implementation. For sending and receiving rows and columns it
is convenient to define appropriate user defined MPI data types. As the local grid is stored
row-wise, for rows such a type can be defined through
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Figure 6.14: Exchange of ghost nodes between processors in west and east direction.

MpiRow = MPI :: DOUBLE . Create_contiguous(i1-i0 -1);

MpiRow .Commit ();

This specifies that MpiRow is a data type consisting of i1− i0−1 elements of type double located
contiguously in memory. Analogously MpiCol defined by

MpiCol = MPI :: DOUBLE .Create_vector(j1 -j0 , 1, grid.leadingDimension ());

MpiCol .Commit ();

refers to j1 − j0 elements of type double with stride equal to the leading dimension of grid.
The implementation of the method setGhostNodes is shown in Listing 6.32. For sending (lines
29-32) and receiving (34-37) non-blocking MPI functions are chosen. This enhances performance
and prevents deadlocks. The underlying MPI implementation can carry out the data exchange
in the most favorable order. The method suspends execution (line 39) until the data exchange
is completed.

20 void

21 DistributedGridVector2D :: setGhostNodes()

22 {

23 MPI :: Request req [8];

24 MPI :: Status stat [8];

25

26 const int *neighbors = mpiCart .neighbors ;

27 const int m = i1 -i0 -2;

28 const int n = j1 -j0 -2;

29 req [0] = mpiCart .comm.Isend (& grid(0,n), 1, MpiCol , neighbors [East], 0);

30 req [1] = mpiCart .comm.Isend (& grid(0,0), 1, MpiRow , neighbors [South], 0);

31 req [2] = mpiCart .comm.Isend (& grid(0,0), 1, MpiCol , neighbors [West], 0);

32 req [3] = mpiCart .comm.Isend (& grid(m,0), 1, MpiRow , neighbors [North], 0);

33

34 req [4] = mpiCart .comm.Irecv (& grid( 0,n+1), 1, MpiCol , neighbors [East], 0);

35 req [5] = mpiCart .comm.Irecv (& grid( -1, 0), 1, MpiRow , neighbors [South ], 0);

36 req [6] = mpiCart .comm.Irecv (& grid( 0, -1), 1, MpiCol , neighbors [West], 0);

37 req [7] = mpiCart .comm.Irecv (& grid(m+1, 0), 1, MpiRow , neighbors [North ], 0);

38

39 MPI :: Request :: Waitall (8, req , stat);

40 }

Listing 6.31: Grid vector distributed over the processor grid.

Listing 6.32 shows the implementation of the discrete L2 norm for a distributed grid vector.
Each process node first computes the square of its local norm, i. e. ||vh|Ω(k,l)

h

||2h (line 5). Then

results from all process nodes are summed up (line 8) and the square root returned (line 9).

41 double

42 normL2 (const DistributedGridVector2D &v)
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Figure 6.15: Exchange of ghost nodes between processors in north and south direction.

43 {

44 double h = 1./v.rh;

45 double r = dp2d_norm2sqr(v.grid );

46

47 double R;

48 v.mpiCart .comm.Allreduce (&r, &R, 1, MPI ::DOUBLE , MPI ::SUM );

49 return h*sqrt(R);

50 }

Listing 6.32: Norm of a distributed grid vector.

6.6.4 Direct Solvers

Parallel implementations of the Cholesky factorization is provided by the ScaLAPACK Library
[59] and for the DST for example by the FFTW library. Based on these implementations, direct
solvers can be integrated as illustrated in Section 6.2 and Section 6.5.2. However, it is notable
that both solvers require a processor grid of the form 1× p. Implementation of these solvers are
in the following not further considered as this merely exhibits technical details of these libraries.

6.6.5 Red-Black Gauss-Seidel

An implementation of the red-black Gauss-Seidel method for distributed grid vectors can be
realized be reusing the non-parallel implementation as illustrated in Listing 6.33.

1 void

2 mv( Transpose trans , double alpha ,

3 const GaussSeidelRedBlack < DirichletPoisson2D , DistributedGridVector2D > &GS ,

4 const DistributedGridVector2D &u_1 , double beta , DistributedGridVector2D &u)

5 {

6 dp2d_gauss_seidel_red (GS.A.rh , GS.f.grid , u.grid );

7 u. setGhostNodes();

8 dp2d_gauss_seidel_black (GS.A.rh , GS.f.grid , u.grid);

9 u. setGhostNodes();
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10 }

Listing 6.33: Grid vector distributed over the processor grid.

After applying the Gauss-Seidel method on red and black points the ghost nodes need to be
updated, respectively. However, this implementation requires some minor modification of the
implementation introduced in Listing 6.26. For the sake of simplicity, the implementation of
dp2d gauss seidel red assumes that indices start at 1 and further that the grid is square. As
the same kind of modification is required to solve the Dirichlet-Poisson on a non-square domain
Ω = (a, b)× (c, d) this should not be considered as a conceptual issue.

6.6.6 Restriction and Prolongation

In the multigrid method the restriction operator is only applied when ghost nodes are up-to-date
therefore no interprocess communication is required:

1 void

2 mv(Transpose trans , double alpha , const Restriction &R,

3 const DistributedGridVector2D &v, double beta , DistributedGridVector2D &vc)

4 {

5 dp2d_restriction_hw(v.grid , vc.grid );

6 }

Listing 6.34: Restriction operator for distributed grid vectors.

The implementation of the prolongation operator in Listing 6.27 requires that for a grid point all
eight neighboring grid points are available. As can be seen from Figure 6.12 for local grids this
is not the case at boundaries on the top and right side. Providing additional implementations
for these cases still allows for reusing the non-parallel implementation dp2d prolongation.

1 void

2 mv(Transpose trans , double alpha , const Prolongation &P,

3 const DistributedGridVector2D &vc , double beta , DistributedGridVector2D &v)

4 {

5 dp2d_prolongation(vc.grid , v.grid);

6 dp2d_prolongation_north (vc.grid , v.grid);

7 dp2d_prolongation_east (vc.grid , v.grid );

8 dp2d_prolongation_north_east (vc.grid , v.grid );

9 v.setGhostNodes();

10 }

Listing 6.35: Prolongation operator for distributed grid vectors.

6.7 Conjugated Gradient Method

Due to the sparsity of the coefficient matrix the conjugated gradient method is another favorable
solver for the Dirichlet-Poisson problem. In order to use the implementation introduced in
Section 6.7, merely specialized matrix-vector products have to be provided. Such specializations
can be realized analogously to the functions computing the residual12. The parallelization of the
cg-method immediately follows from the parallelization of the matrix-vector product. Thus, like
the generic implementation of the multigrid method only one implementation of the cg-method
is sufficient for solving the Dirichlet-Poisson problem in one and two space dimensions either
serial or parallel.

Stationary iterative solvers can be integrated in FLENS in order to serve as preconditioners.
For the initial guess u(0) ≡ 0 applying one step of the Jacobi method in order to solve Au = q
leads to

u(1) = −D−1(L + U)u(0) + D−1q = D−1q, (6.60)

12Actually the residual functions could have been implemented based on implementations for the matrix-vector
product. In this case the cg-method could be used out of the box. This approach was not followed in this chapter
for the sake of demonstrating that optimized functions for computing the residual can be used.
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such that D−1 = diag(A)−1 can be considered as an approximation of A−1. This gives the Jacobi
preconditioner introduced in Section 5.2. As was illustrated in Chapter 5 the preconditioner can
be easily integrated into FLENS allowing the following usage of the pcg-method implementation:

// ...

JacobiPrec <DirichletPoisson2D > J(A);

int it = pcg(B, A, x, b);

An example implementation is given in the FLENS tutorial [45]. Notable is the fact that the
preconditioner directly benefits from any kind of optimization or parallelization of the under-
lying Jacobi method. Symmetric variants of stationary methods can be used to obtain further
preconditioners analogously. For instance, the symmetric Gauss-Seidel method (cp. [52], [4])

u(n+1) = −(U + D)−1L(L + D)−1Uu(n) + (U + D)−1D(L + D)−1q,

leads to B = (U + D)−1D(L + D)−1.
Symmetric stationary iterative solvers can easily be integrated into FLENS to serve as

smoothers for the multigrid method. This allows using the the multigrid method as a pre-
conditioner.

6.8 Summary of the Chapter

The capabilities of FLENS to combine reusability, flexibility and efficiency were demonstrated
by using the Dirichlet-Poisson problem as model problem. Combing these different aspects was
possible due to the orthogonal design of the library. Reusability and flexibility was exploited on
different levels. On the one hand, the same implementation of the multigrid or the cg-method
could be reused to solve the problem in different space dimension and even parallelization did
not require any modifications. On the other hand, it was shown for instance, how an optimized
implementation of the Gauss-Seidel method could not only be used for the multigrid method as
a smoother and direct solver but also as a preconditioner for the cg-method. Further, the total
efficiency did benefit from the reusability. For example, performance tuning of the Gauss-Seidel
method instantly tunes the performance of the multigrid and the cg-method.



7 Application of the FDM:
Navier-Stokes Equations

Computational fluid dynamics (CFD) is one of the branches of fluid mechanics that uses numer-
ical methods and algorithms to solve and analyze problems that involve fluid flows. Governing
equations for the motion of fluid substances such as liquids and gases are the Navier-Stokes
equations. This chapter exemplifies how components developed in the previous chapter can be
applied to some simple problems in the field of CFD. The numerical treatment of the Navier-
Stokes equations follows [47] very closely.

Section 7.1 briefly introduces the Navier-Stokes equations and Section 7.2 the so called lid-
driven cavity problem which is a standard test problem in CFD. The time and space discretization
of the Navier-Stokes equations gets covered in Sections 7.3 and 7.4 respectively. This results in
a simple solver for the two-dimensional Navier-Stokes equations. As will be shown there, the
computation of a numerical solution requires to solve a Neumann-Poisson problem. Section 7.5
illustrates how the implementation of the multigrid method from Chapter 6 can be utilized
for this purpose. Section 7.6 outlines the parallelization of the Navier-Stokes solver. Finally,
Section 7.7 illustrates how the components developed in this chapter can be applied to solve the
so called Pot and Ice problem.

7.1 Navier-Stokes Equations

The Navier-Stokes equations establish that changes in momentum in infinitesimal volumes of
fluid are the sum of forces acting inside the fluid. Therefore the equations basically constitute
an application of Newton’s second law. Relevant forces are dissipative viscous forces (similar to
friction), changes in pressure and other body forces acting inside the fluid such as gravity. For
an incompressible and Newtonian1 fluid the flow inside a domain Ω ⊂ R

n (n ∈ {2, 3}) over time
t ∈ R

+ is governed by the equations

∂

∂t
~u + (~u · ∇)~u +∇p =

1

Re
∆~u + ~F , (7.1)

∇ · ~u = 0 (7.2)

where

~u : Ω× R
+ → R

n denotes the velocity field of the fluid,

p : Ω× R
+ → R the pressure and

~F : Ω× R
+ → R

n the forces acting inside the fluid.

1A Newtonian fluid is characterized by a linear relation between sheer rate and sheer stress, e. g. τx = η d~u
dy

where τx denotes the sheer stress in x direction and η the dynamic viscosity [39]. Examples for Newtonian fluids
are water and air whereas blood is a typical non-Newtonian fluid.

107
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Obviously equations (7.1) and (7.2) specify the pressure p only up to a constant value. Necessary
for the existence and uniqueness of a solution are initial and boundary conditions for the velocity
field ~u. The initial condition

~u(~x, 0) = ~u0(~x), ~x ∈ Ω (7.3)

describing the flow for t = 0 has to satisfy (7.2). In the following boundary conditions are
considered only for the special case where the fluid is surrounded by solid, impermeable walls.
In this case the boundary condition specifies the velocity in normal and tangential direction on
the boundary ∂Ω for t ≥ 0. For ~x ∈ ∂Ω let ~un(~x, t) denote the velocity in normal direction and
~ut(~x, t) = ~u(~x, t) − ~un(~x, t) the velocity in tangential direction. The fact that no fluid can pass
through the wall is specified by the boundary condition

~un(~x, t) = 0, ~x ∈ ∂Ω, t ≥ 0. (7.4)

The velocity tangential to the wall can be specified either by so called no-slip or free-slip condi-
tions. The no-slip condition

~ut(~x, t) = 0, ~x ∈ ∂Ω, t ≥ 0 (7.5)

states that the fluid ‘sticks’ on the wall such that the tangential velocity vanishes at the boundary.
Conversely the free-slip condition2

∂~ut(~x, t)

∂~n
= 0, ~x ∈ ∂Ω, t ≥ 0 (7.6)

states that there is no friction loss at the wall.
Equations (7.1) to (7.6) specify the Navier-Stokes equations in non-dimensional form. This

form is obtained by introducing a characteristic length L and a characteristic velocity u∞ for the
flow. Quantities in the Navier-Stokes equations are measured in units that are based on L and
u∞. For example, the velocity and the time is measured in units of u∞ and L/u∞ respectively.
Denoting the constant density of the fluid by ρ∞ the pressure and the force are measured in
units of 1/ρ∞u2

∞ and L/ρ∞u2
∞ respectively. The dimensionless Reynolds number

Re =
ρ∞ u∞ L

η
(7.7)

indicates the ratio between inertial forces (u∞L) and viscous forces (η/ρ∞) where η denotes the
dynamic viscosity.

7.2 Motivation: The Lid-Driven Cavity Problem

The lid-driven cavity problem has long been used as a test or validation case for new methods in
computational fluid dynamics. The problem geometry is simple and two-dimensional. Figure 7.1
shows the standard case of the problem where fluid is contained in a square domain Ω with
no-slip boundary conditions. The boundary has three non-moving sides while the ‘lid’ is moving
tangentially.

Let ~u = (u, v)T denote the velocity field in two space dimensions. The component form of
equation (7.2) is given as

∂u

∂x
+

∂v

∂y
= 0. (7.8)

Applying (7.8) to the convective term (~u · ∇)~u gives

(~u · ∇)~u =

(
u∂u

∂x + v ∂u
∂y

u ∂v
∂x + v ∂v

∂y

)
=




∂(u2)

∂x + ∂(uv)
∂y

∂(uv)
∂x + ∂(v2)

∂y



 . (7.9)

2∂/∂~n denotes the normal derivative.
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~un = 0, ~ut = u0 ≡ const
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Fluid

Figure 7.1: The two-dimensional lid-driven cavity problem.

From this follows that the component form of equations (7.1) and (7.2) can be rewritten as

∂u

∂t
+

∂(u2)

∂x
+

∂(uv)

∂y
= fx −

∂p

∂x
+

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
(7.10)

∂v

∂t
+

∂(uv)

∂x
+

∂(v2)

∂y
= fy −

∂p

∂y
+

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
(7.11)

where ~F = (fx, fy)T denotes the gravity field.
Choosing the width of the square domain as characteristic length L does scale the domain

such that Ω = (0, 1)2. Then the boundary conditions for the lid-driven cavity problem can be
stated as

u(x, 1, t) = u0, u(x, 0, t) = v(x, 0, t) = v(x, 1, t) = 0 x ∈ [0, 1], (7.12)

u(0, y, t) = u(1, y, t) = v(0, y, t) = v(1, y, t) = 0 y ∈ [0, 1]. (7.13)

To gain an impression on the meaning of the Reynolds number consider water as fluid. At 20oC
the dynamic viscosity of pure water is η = 0.001 Ns/m2 and its density ρ∞ = 999.2 Kg/m3.
Measuring the velocity u0 in units of u∞ = 0.001 m/s and lengths in units of L = 1 m leads to
Re ≈ 1000.

7.3 Time Discretization and the Projection Method

Time derivatives are approximated at discrete points of time {tn}n≥0 where t0 = 0. Time
discretizations of the velocity and pressure fields at time tn are denoted by ~u(n) = u( · , tn) and
p(n) = p( · , tn) respectively. Using the explicit Euler method a semi-discrete version3 of (7.1) can
be written as

~u(n+1) − ~u(n)

δtn
=

1

Re
∆~u(n) + ~F (n) −

(
~u(n) · ∇

)
~u(n) −∇p(n+1) (7.14)

where ~F (n) = ~F ( · , tn) and δtn = tn+1 − tn. Equation (7.14) is explicit for ~u and implicit for p.
Rearranging terms gives the following semi-discrete version of equations (7.1) and (7.2):

~u(n+1) = ~u
(n+1)
∗ − δtn∇p(n+1), (7.15)

∇ · ~u(n+1) = 0 (7.16)

3Discrete in time but continuous in space.
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where

~u
(n+1)
∗ = ~u(n) + δtn

(
1

Re
∆~u(n) + ~F (n) −

(
~u(n) · ∇

)
~u(n)

)
(7.17)

can be considered as an approximation of ~u(n+1). As ~u
(n+1)
∗ only depends on values at time

tn it can be computed explicitly. Subsequently ~u(n+1) gets computed by projecting ~u
(n+1)
∗ into

the space of divergence-free vector fields. As can be seen from (7.15) this projection is achieved
through a pressure correction. Applying (7.16) to equation (7.15) defines the correction term
through

0 = ∇ · ~u(n+1) = ∇ ·
(
~u

(n+1)
∗ − δtn∇p(n+1)

)
. (7.18)

Rearranging terms, this states the Poisson equation

−∆p(n+1) = − 1

δtn
∇ · ~u(n+1)

∗ (7.19)

for the pressure gradient. Boundary conditions for (7.19) can be retrieved by imposing the
boundary conditions

~u
(n+1)
∗ = ~u(n+1) = ~u( · , tn+1) on ∂Ω (7.20)

for the approximate velocity field. From (7.15) it follows that

∂

∂~n
p(n+1) = ∇p(n+1) · ~n =

1

δtn

(
~u

(n+1)
∗ − ~u(n+1)

)
· ~n = 0 on ∂Ω (7.21)

where ~n denotes the outer normal vector on ∂Ω. Because of these homogenous Neumann boundary
conditions the pressure is only defined up to a constant. Imposing as a further condition

∫

Ω

p(n+1)(~x) d~x = 0 (7.22)

the pressure filed p(n+1) is uniquely defined through (7.19), (7.21) and (7.22).
In the following the projection method is applied to equations (7.10) and (7.11) specifying

the Navier-Stokes equations in two space dimension. The resulting semi-discrete equations are
written in component form, which makes it easier to motivate the space discretization introduced
in the next section. The computations required to advance the velocity field ~u(n) = (u(n), v(n))T

to time t = tn+1 can be subdivided into the following three steps:

1. Compute the approximate velocities

u
(n+1)
∗ = u(n) + δtn

(
1

Re

(
∂2u(n)

∂x2
+

∂2u(n)

∂y2

)
+ f (n)

x − ∂
(
u(n)

)2

∂x
− ∂

(
u(n)v(n)

)

∂y

)
(7.23)

v
(n+1)
∗ = v(n) + δtn

(
1

Re

(
∂2v(n)

∂x2
+

∂2v(n)

∂y2

)
+ f (n)

y − ∂
(
u(n)v(n)

)

∂x
− ∂

(
v(n)

)2

∂y

)
(7.24)

2. Solve the Neumann-Poisson problem

− ∂2p

∂x2
− ∂2p

∂y2
= − 1

δtn

(
∂u

(n+1)
∗

∂x
+

∂v
(n+1)
∗

∂y

)
in Ω, (7.25)

− ∂p

∂~n
= 0 on ∂Ω, (7.26)

∫

Ω

p(~x) d~x = 0 (7.27)

for p(n+1).
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Figure 7.2: Staggered grids used for the discretization of the velocity and pressure fields.

3. Apply a pressure correction projecting the approximate velocities into the subspace of
divergence-free functions:

u(n+1) = u
(n+1)
∗ − δtn

∂p(n+1)

∂x
(7.28)

v(n+1) = v
(n+1)
∗ − δtn

∂p(n+1)

∂y
(7.29)

7.4 Space Discretization and Implementation

This section illustrates how FLENS can be utilized to realize a simple implementation of a Navier-
Stokes solver. At first, the semi-discrete equations that resulted from the projection method are
discretized in space. Implementations of the particular discretization schemes will be introduced
side by side. Finally, these implementations will be used as components for the Navier-Stokes
solver.

7.4.1 Staggered Grids

In order to prevent pressure oscillations so called staggered grids are used for the space discretiza-
tion. Staggered grids result from the grid Ωh defined in Section 6.5 by shifting the grid points
by half the grid spacing in x- or y-direction. For sx, sy ∈

{
0, 1

2

}
staggered grids are formally

defined through

Ω
(sx,sy)
h :=

{
(xi, yi) =

(
(i + sx)h, (j + sy)h

)
: i = δsx,0, . . . , N, j = δsy ,0, . . . , N

}
. (7.30)
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For the numerical treatment of the boundary conditions the grid Ω
(sx,sy)
h has to be extended by

ghost nodes that are located outside the domain Ω. The formal definition of this extended grid
is given through

Ω̂
(sx,sy)
h :=

{
(xi, yi) =

(
(i + sx)h, (j + sy)h

)
: i = i

(sx)
0 , . . . , i

(sx)
1 , j = j

(sy)
0 , . . . , j

(sy)
1

}
(7.31)

where

i
(sx)
0 = δsx,0 − 1, i

(sx)
1 = N + 1 (7.32)

and

j
(sy)
0 = δsy,0 − 1, j

(sy)
1 = N + 1. (7.33)

Denoting corresponding spaces of grid functions by

V
(sx,sy)
h =

{
v
∣∣∣ v : Ω̂

(sx,sy)
h → R

}
(7.34)

the semi-discrete functions in equations (7.23) to (7.28) are approximated by grid functions as
follows:

1. The pressure filed p(n) gets approximated by p
(n)
h ∈ V

( 1
2 , 12 )

h ,

2. velocities u(n) and u
(n)
∗ by u

(n)
h , u

(n)
∗,h ∈ V

(0, 1
2 )

h respectively and

3. velocities v(n) and v
(n)
∗ by v

(n)
h , v

(n)
∗,h ∈ V

( 1
2 ,0)

h .

The location of grid points that are relevant for the space discretization is illustrated in Figure 7.2.

Implementation

Listing 7.1 illustrates the implementation of grid functions defined on staggered grids. Template
parameters (line 1) specify shifts of grid points in x- and y-direction. These shifts are defined
through boolean values where false and true define a shift of 0 and 0.5h respectively. Analo-
gously to the implementation of grid functions illustrated in the previous chapter in Listing 6.22
values on grid points are stored internally in a matrix (lines 13, 15) to provide fast element
access. Dimensions of this internal matrix are defined in the constructor (lines 6-7) according to
(7.32) and (7.33). As before, deriving the implementing class from the vector base class (line 3)
realizes that grid functions are mathematically represented as vectors.

1 template <bool DirectionX , bool DirectionY >

2 class StaggeredGridVector2D

3 : public Vector < StaggeredGridVector2D <DirectionX , DirectionY > >

4 {

5 public :

6 StaggeredGridVector2D (int _rh)

7 : rh(_rh ), grid(_(( DirectionX ) ? -1: 0, rh),

8 _(( DirectionY ) ? -1: 0, rh))

9 {}

10

11 // ...

12

13 typedef GeMatrix <FullStorage <double , RowMajor > > Grid;

14 int rh;

15 Grid grid;

16 };

Listing 7.1: Gridfunctions on staggered grids.
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bc bc×
v−1,j v0,j

Figure 7.3: Treatment of boundary conditions: at the left boundary the velocity in y-direction
is obtained at the red cross through linear interpolation.

7.4.2 Boundary Conditions for the Lid-Driven Cavity Problem

Values of u
(n)
h and v

(n)
h at grid points located on the boundary are specified through (7.12) and

(7.13) to be

u
(n)
0,j = 0, u

(n)
N+1,j = 0, j = 0, . . . , N, (7.35)

v
(n)
i,N+1 = 0, v

(n)
i,0 = 0, i = 0, . . . , N. (7.36)

Where grid points are not directly located on the boundary the boundary conditions are enforced
by setting the neighboring ghost nodes. As illustrated in Figure 7.3 values on the boundary are

retrieved through linear interpolation. Applying this to enforce the boundary conditions for u
(n)
h

at the top and bottom side and for v
(n)
h at the left and right side leads to

u
(n)
i,N+1 = 2u0 − u

(n)
i,N , u

(n)
i,−1 = −u

(n)
i,0 , i = 0, . . . , N, (7.37)

v
(n)
−1,j = −v

(n)
0,j , v

(n)
N+1,j = −v

(n)
N,j, j = 0, . . . , N. (7.38)

Implementation

Listing 7.2 illustrates an implementation to enforce the boundary conditions as specified by
equations (7.35) to (7.38).

1 template <typename U, typename V>

2 void

3 setBoundaryCondition (int rh, GeMatrix <U> &u, GeMatrix <V> &v, double u0)

4 {

5 int N = rh - 1;

6

7 u(0,_) = 0; u(N+1,_) = 0;

8 v(_,0) = 0; v(_,N+1) = 0;

9

10 u(_,-1) = -u(_ ,0);

11 u(_,N+1) = 2*u0;

12 u(_,N+1) -= u(_,N);

13

14 v( -1,_) = -v(0,_);

15 v(N+1,_) = -v(N,_);

16 }

Listing 7.2: Enforcing boundary conditions for the lid-driven cavity problem.

7.4.3 Numerical Approximation of u
(n+1)
∗ and v

(n+1)
∗

In the following only the computation of u
(n+1)
∗,h approximating u

(n+1)
∗ is illustrated in more de-

tail. A corresponding approximation of v
(n+1)
∗ can be obtained analogously. The approximation

of u
(n+1)
∗ results from (7.28) by discretizing the spacial derivatives. Let [ · ]x,y indicate the ap-

proximation of derivatives at (x, y) then for i = 1, . . . , N and j = 0, . . . , N an approximation of
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u
(n+1)
∗ at the grid point (ih, (j + 0.5)h) is specified through

u
(n+1)
∗,i,j = u

(n)
i,j + δtn

(
1

Re

[
∂2u(n)

∂x2
+

∂2u(n)

∂y2

]

ih,(j+0.5)h

+ f (n)
x

(
ih, (j + 0.5)h

)

−
[

∂
(
u(n)

)2

∂x

]

ih,(j+0.5)h

−
[

∂
(
u(n)v(n)

)

∂y

]

ih,(j+0.5)h



 (7.39)

Approximations of the different terms can be obtained as follows:

1. Applying second central differences to the first term leads to

[
∂2u(n)

∂x2
+

∂2u(n)

∂y2

]

ih,(j+0.5)h

=
u

(n)
i−1,j − 2u

(n)
i,j + u

(n)
i+1,j

h2
+

u
(n)
i,j−1 − 2u

(n)
i,j + u

(n)
i,j+1

h2
. (7.40)

2. Applying second central differences to the interpolation of u
(n)
h at the cell centers (indicated

in Figure 7.4 by x) leads to

[
∂
(
u(n)

)2

∂x

]

ih,(j+0.5)h

=
1

4h

((
u

(n)
i+1,j + u

(n)
i,j

)2

−
(
u

(n)
i,j + u

(n)
i−1,j

)2
)

. (7.41)

For high Reynolds numbers or high velocities using second central differences leads to
numerical instabilities. A thorough discussion about the numerical discretization of con-
vective terms can be found for instance in [47], [28] or [29]. Following closely the methods
introduced in [47] the convective terms are discretized using the weighted donor-cell scheme

[
∂
(
u(n)

)2

∂x

]

ih,(j+0.5)h

=
1

4h

((
u

(n)
i,j + u

(n)
i+1,j

)2

−
(
u

(n)
i−1,j + u

(n)
i,j

)2
)

+
γ

4h

(∣∣∣u(n)
i,j + u

(n)
i+1,j

∣∣∣
(
u

(n)
i,j + u

(n)
i+1,j

))

− γ

4h

(∣∣∣u(n)
i−1,j + u

(n)
i,j

∣∣∣
(
u

(n)
i−1,j + u

(n)
i,j

))
. (7.42)

where γ ∈ [0, 1]. Obviously the second central differences are obtained for γ = 0. A
criterion for the choice of γ is given below in (7.44).

3. Applying the weighted donor-cell scheme analogously to the third term leads to

[
∂
(
u(n)v(n)

)

∂y

]

ih,(j+0.5)h

=
1

4h

((
u

(n)
i,j + u

(n)
i,j+1

)(
v
(n)
i−1,j+1 + v

(n)
i,j+1

)

−
(
u

(n)
i,j−1 + u

(n)
i,j

)(
v
(n)
i,j + v

(n)
i−1,j

))

+
γ

4h

((
u

(n)
i,j + u

(n)
i,j+1

) ∣∣∣v(n)
i−1,j+1 + v

(n)
i,j+1

∣∣∣
)

− γ

4h

((
u

(n)
i,j−1 + u

(n)
i,j

) ∣∣∣v(n)
i,j + v

(n)
i−1,j

∣∣∣
)

(7.43)

According to [47] and [40] the weighting parameter has to be chosen such that

γ ≥ max
i,j

(∣∣∣∣∣
u

(n)
i,j δtn

h

∣∣∣∣∣ ,

∣∣∣∣∣
v
(n)
i,j δtn

h

∣∣∣∣∣

)
(7.44)

is satisfied.
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Figure 7.4: Interpolation of u
(n)
h and v

(n)
h .

Implementation

The computations of u
(n+1)
∗,h and v

(n+1)
∗,h are implemented in function computeImpulse4. The

function receives the velocities u
(n)
h and v

(n)
h through matrices u and v (line 3) where the matrix

index ranges are assumed to conform (7.32) and (7.33). Force fields fx and fy are assumed to

be constant. The approximate velocities u
(n+1)
∗,h and v

(n+1)
∗,h are stored in matrices us and vs

respectively which get passed to the functions as a non-const reference. As can be seen from
Listing 7.3 the implementation follows closely the notation used for the discretization: (7.40) is
realized in lines 11-12, (7.42) in lines 14-18 and (7.43) in lines 20-24.

1 template <typename U, typename V, typename US , typename VS >

2 void

3 computeImpulse(int rh, const GeMatrix <U> &u, const GeMatrix <V> &v,

4 double dt, double gamma , double re , double fx , double fy ,

5 GeMatrix <US > &us , GeMatrix <VS> &vs)

6 {

7 double rhh = rh*rh;

8

9 for (int i=u.firstRow ()+1; i<=u.lastRow ()-1; ++i) {

10 for (int j=u.firstCol ()+1; j<=u.lastCol ()-1; ++j) {

11 double ddux = (u(i+1, j) - 2*u(i,j) + u(i-1,j))* rhh;

12 double dduy = (u( i,j+1) - 2*u(i,j) + u( i,j-1))* rhh;

13

14 double duu = sqr(u( i,j) + u(i+1,j))

15 - sqr(u(i-1,j) + u( i,j))

16 +gamma *( std ::abs (u( i,j)+u(i+1,j))*(u( i,j)-u(i+1,j))

17 -std ::abs (u(i-1,j)+u( i,j))*(u(i-1,j)-u( i,j)));

18 duu *= rh/4;

19

20 double duv = (v(i,j+1)+v(i-1,j+1))*( u(i, j)+u(i,j+1))

21 - (v(i, j)+v(i-1, j))*(u(i,j-1)+u(i, j))

22 +gamma *( std ::abs (v(i,j+1)+v(i-1,j+1))*( u(i, j)-u(i,j+1))

23 -std ::abs (v(i, j)+v(i-1, j))*(u(i,j-1)-u(i, j)));

24 duv *= rh/4;

25

26 us(i,j) = u(i,j) + dt*(( ddux+dduy )/re - duu -duv +fx);

27 }

28 }

29

30 // ...

31 }

Listing 7.3: Computation of the approximate velocities in x and y direction.

4The function name reflects that u
(n+1)
∗,h

results from integrating volume forces over the time-interval δtn.
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7.4.4 Computation of p(n+1)

Discretizing the right-hand side of (7.25) using first central differences, i. e.

q
(n+1)
i,j = − 1

δtn

[
∂u

(n+1)
∗

∂x
+

∂v
(n+1)
∗

∂y

]

((i+0.5)h,(j+0.5)h)

= − 1

δtn

(
u

(n+1)
∗,i+1,j − u

(n+1)
∗,i,j

h
+

v
(n+1)
∗,i,j+1 − v

(n+1)
∗,i,j

h

)
(7.45)

and second central differences for the left-hand side leads to the system of equations

1

h2

(
4p

(n+1)
i,j − p

(n+1)
i−1,j − p

(n+1)
i+1,j − p

(n+1)
i,j−1 − p

(n+1)
i,j+1

)
= q

(n+1)
i,j i, j ∈ {0, . . . , N}. (7.46)

From the discretization of the homogeneous Neumann boundary conditions (7.26) it follows that

p
(n+1)
i,−1 = p

(n+1)
i,0 , p

(n+1)
i,N+1 = p

(n+1)
i,N i ∈ {0, . . . , N}, (7.47)

p
(n+1)
−1,j = p

(n+1)
0,j , p

(n+1)
N+1,j = p

(n+1)
N,j j ∈ {0, . . . , N}. (7.48)

Hence, a grid function ph that satisfies the Neumann boundary conditions gets uniquely described
by its values on interior grid points and can be represented as

ph = (p0,0, . . . , pN,0, p0,1, . . . )
T ∈ R

(N+1)2 .

From (7.47) and (7.48) it follows that for the system of equations in (7.46) the coefficient matrix
is given by

Ãh :=
1

h2





T̃N + 2I −I

−I T̃N + 2I −I
. . .

. . .
. . .

−I T̃N + 2I −I

−I T̃N + 2I




∈ R

(N+1)2×(N+1)2 (7.49)

where

T̃N =





1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1




∈ R

(N+1)×(N+1). (7.50)

Using numerical quadrature for the discretizing condition of (7.27) leads to

0 =

N∑

i=0

N∑

j=0

p
(n+1)
i,j = eT p

(n+1)
h (7.51)

where e = (1, . . . , 1)T ∈ R
(N+1)2 . In order to allow a more compact notation let

Ph :=
{

ph ∈ R
(N+1)2 : eT ph

}
(7.52)

denote the subspace satisfying the orthogonality condition (7.51). Then a discrete version of the
Neumann-Poisson problem stated in equations (7.25) to (7.27) can be written as:

Find p
(n+1)
h ∈ Ph such that Ãh p

(n+1)
h = q

(n+1)
h . (7.53)
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By examining the eigenvalues and eigenvectors of Ãh criterions for the existence and uniqueness
of a solution can be given. Eigenvalues λ̃0, . . . , λ̃N and eigenvectors ṽ0, . . . , ṽN of T̃N are explicitly
known to be

λ̃k = 2

(
1− cos

(
πk

N + 1

))
, ṽk =

(
cos

(
πk
(
l + 1

2

)

N + 1

))N

l=0

. (7.54)

It can be shown that the set of eigenvectors form an orthogonal basis of R
N+1. As was shown

in Section 6.5.3 it follows that eigenvalues and eigenvectors of Ãh are

λ̃k,l =
λ̃k + λ̃k

h2
and ṽk,l = Vec

(
ṽkṽT

l

)
k, l = 0, . . . , N. (7.55)

Obviously λ̃0,0 is the only zero-valued eigenvalue of Ãh. Therefore a unique solution of (7.53)
exists if and only if the right-hand side qh is orthogonal to eigenvector ṽ0,0 = e spanning the

kernel of Ãh. From (7.45) it follows that this condition for solvability, i. e.

0 = Vec (ṽ0,0)
T q

(n+1)
h = eT q

(n+1)
h ⇔

N∑

i=0

N∑

j=0

q
(n+1)
i,j = 0, (7.56)

is satisfied if u
(n+1)
∗,h satisfies the type of boundary conditions stated in (7.35) and (7.36).

The system of linear equations stated in (7.53) can be solved using the multigrid method.
Definition of the appropriate smoothing, restriction and prolongation operators and an outline
for an implementation is illustrated in more detail in Section 7.5.

Implementation

As illustrated in Listing 7.4 the right-hand side qh for the Neumann-Poisson problem gets as-
sembled according to (7.45).

1 template <typename US, typename VS , typename RHS >

2 void

3 computePoissonRhs(int rh, const GeMatrix <US > &us , const GeMatrix <VS > &vs ,

4 double dt, GeMatrix <RHS > &rhs)

5 {

6 for (int i=rhs.firstRow ()+1; i<=rhs .lastRow ()-1; ++i) {

7 for (int j=rhs .firstCol ()+1; j<= rhs.lastCol ()-1; ++j) {

8 rhs(i,j) =-rh *(( us(i+1,j)-us(i,j))+( vs(i,j+1)-vs(i,j)))/ dt;

9 }

10 }

11 }

Listing 7.4: Computation of the right-hand side for the Neumann-Poisson problem.

7.4.5 Computation of u(n+1)

Using first central differences for the discretization of the pressure correction defined in (7.28)
and (7.29) leads to

u
(n+1)
i,j = u

(n+1)
∗,i,j − δtn

(
p
(n+1)
i,j − p

(n+1)
i−1,j

)
, (7.57)

v
(n+1)
i,j = v

(n+1)
∗,i,j − δtn

(
p
(n+1)
i,j − p

(n+1)
i,j−1

)
. (7.58)
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Implementation

As indicated in Listing 7.7 the pressure correction can be implemented completely analogously
to the discrete formulation given in (7.57) and (7.58).

1 template <typename US , typename VS, typename P, typename U, typename V>

2 void

3 computeVelocity(int rh, const GeMatrix <US > &us , const GeMatrix <VS > &vs ,

4 const GeMatrix <P> &p, double dt ,

5 GeMatrix <U> &u, GeMatrix <V> &v)

6 {

7 for (int i=u.firstRow ()+1; i<=u.lastRow ()-1; ++i) {

8 for (int j=u.firstCol ()+1; j<=u.lastCol ()-1; ++j) {

9 u(i,j) = us(i,j) - rh*dt*(p(i,j)-p(i-1,j));

10 }

11 }

12

13 // ...

14 }

Listing 7.5: Obtaining u(n+1) by applying the pressure correction.

7.4.6 Stability Conditions and Time Step Control

Depending on the spacial discretization time steps δtn have to satisfy certain stability conditions.
Necessary for the condition is the so called Courant-Friedrichs-Levy (CFL) condition

max |u(n)
h | δtn < h, max |v(n)

h | δtn < h. (7.59)

This condition applies, generally, to explicit schemes for hyperbolic partial differential equations.
Physically, this condition indicates that fluid particles should not travel more than one spacial
step size h in one time step δtn. The stability condition

δtn < Re
h2

4
(7.60)

applies to explicit schemes for hyperbolic partial differential equations [29]. For the Navier-Stokes
equation all these conditions are necessary. Defining time steps by

δtn := τ min

{
Re

h2

4
,

h

max |u(n)
h |

,
h

max |v(n)
h |

}
(7.61)

where τ ∈ (0, 1] is a safety factor ensures that the above conditions are met.

Implementation

Function computeTimeStep computes δtn according to (7.61). As indicated in Listing 7.6 the
function receives the discrete velocity field, the Reynolds number, the grid h and returns the new
time step.

1 template <typename U, typename V>

2 double

3 computeTimeStep(int rh, const GeMatrix <U> &u, const GeMatrix <V> &v,

4 double re, double delta)

5 {

6 // ...

7 }

Listing 7.6: Computation of time steps δtn.
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7.4.7 FLENS Implementation of the Lid-Driven Cavity Problem

So far functions were implemented in a ‘FLENS independent style’. This means, functions like

1 template <typename U, typename V, typename US , typename VS >

2 void

3 computeImpulse(int rh, const GeMatrix <U> &u, const GeMatrix <V> &v,

4 double dt, double gamma , double re , double fx , double fy ,

5 GeMatrix <US > &us , GeMatrix <VS> &vs)

6 {

7 // ...

8 }

could have been implemented analogously in programming languages like C or Fortran. There-
fore, these function can be considered as low-level implementations.

Vector type StaggeredGridVector2D was defined in Listing 7.1 to represent grid functions
on staggered grids. In the following, typedefs

1 typedef StaggeredGridVector2D <false , true > GridVectorU ;

2 typedef StaggeredGridVector2D <true , false > GridVectorV ;

3 typedef StaggeredGridVector2D <true , true > GridVectorP ;

will be used for convenience. As was thoroughly illustrated in Chapter 6, the low-level imple-
mentations can be integrated into FLENS in the usual manner:

1 void

2 computeImpulse(const GridVectorU &u, const GridVectorV &v,

3 double dt, double gamma , double re , double fx , double fy ,

4 GridVectorU &us, GridVectorV &vs)

5 {

6 // ... call low -level component ...

7 }

For the sake of simplicity physical parameters are assumed to be defined as global variables:

1 double re = 1000;

2 double pr = 7;

3 double delta = 0.15;

4 double gamma = 0.9;

5 double gx = 0;

6 double gy = -9.81;

Listing 7.7: Obtaining u(n+1) by applying the pressure correction.

Combing the single components elaborated in this section, Algorithm 7.1 outlines an explicit
finite difference scheme in order to obtain a numerical solution of the lid-driven cavity problem.

Algorithm 7.1 (Explicit Finite Difference Scheme).

Initialize: t← 0 and n← 0.

While t < tmax

For u(n) and v(n) set boundary condition according to (7.35), (7.36) and (7.38).

Compute δtn according to (7.61).

Compute u
(n+1)
∗,h and v

(n+1)
∗,h according to (7.39).

Compute q(n+1) according to (7.45).

Compute p(n+1) by solving (7.53).

Compute u(n+1) and v(n+1) according to (7.57) and (7.58).

t← t + δtn, n← 0.



120 7 Application of the FDM: Navier-Stokes Equations

The implementation outlined in Listing 7.8 closely follows Algorithm 7.1. However, the compu-
tation of p(n+1) is only indicated in line 13. This requires solving the system of linear equations
in problem (7.53) and actually constitutes the most time consuming operation. The following
section covers the computation of p(n+1) in more detail.

1 GridVectorU u(rh), us(rh);

2 GridVectorV v(rh), vs(rh);

3 GridVectorP &p = u_mg[p_mg], &rhs = f_mg[p_mg];

4

5 // ...

6

7 while (t<tMax) {

8 setBoundaryCondition (u, v, 1);

9 dt = computeTimeStep(u, v, re , pr, delta );

10 computeForce(u, v, dt, gamma , re , gx, gy , us, vs);

11 computePoissonRhs(us , vs, dt , rhs );

12

13 // compute p (using the multigrid method )

14

15 computeVelocity(us, vs , p, dt , u, v);

16 t += dt;

17 }

Listing 7.8: Implementation of Algorithm 7.1.

7.5 Multigrid Method for the Neumann-Poisson Problem

This section illustrates the application of the multigrid method for solving (7.53). For convenience
the notation used in Section 7.4.4 gets adapted as follows:

1. p∗h ∈ Ph denotes the exact solution, i. e. Ãhp∗h = qh.

2. p
(0)
h denotes the initial guess and p

(1)
h , p

(2)
h , . . . a sequence of vectors eventually converging

to the exact solution.

7.5.1 Smoothing Operators: Stationary Iterative Methods

As defined in Section 6.3, let Ãh = L + D + U denote an additive decomposition. Eigenvalues of
the Jacobi iteration matrix

JÃh
= −D−1(L + U) (7.62)

are related to Ãh by

λk,l(JÃh
) = 1− λk,l(h

2Ãh)

4
=

1

2

(
cos

(
πl

N + 1

)
+ cos

(
πk

N + 1

))
, k, l = 0, . . . , N (7.63)

and eigenvectors of JÃh
and Ãh are the same. From (7.63) it immediately follows that ρ(Ãh) = 1

such that convergence of the method is not obviously guaranteed. The error after ν iterations is

e(ν) = p∗h − p
(ν)
h =

(
JÃh

)ν (
p∗h − p

(0)
h

)
=
(
JÃh

)ν
e(0). (7.64)

Representing the initial error with respect to the eigenvectors, i. e.

e(0) =

N∑

k=0

N∑

l=0

ck,lṽk,l (7.65)

leads to

e(ν) =

N∑

k=0

N∑

l=0

ck,lλk,l(JÃh
)(ν)ṽk,l. (7.66)
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For an initial guess p
(0)
h ∈ Ph it follows that c0,0 = 0 such that

lim
ν→∞

∣∣∣ck,lλk,l(JÃh
)(ν)
∣∣∣ = 0 k, l = 0, . . . , N. (7.67)

Hence the Jacobi method does converge if all computation can be carried out exactly.

For numerical implementations involving roundoff errors convergence can be guaranteed by
projecting each iterate of the Jacobi method into Ph. Using the Gram-Schmidt method to enforce
the orthogonality condition (7.51) leads to the projection

Pe : R
(n+1)2 → Ph, x 7→ Pex =

(
I − eeT

eT e

)
x = x− eT x

eT e
e. (7.68)

Applying the projection after each iteration the thus modified Jacobi method can be formally
stated as

p
(ν+1)
h = Pe

[
JÃh

p
(ν)
h + D−1qh

]
= PeJÃh

p
(ν)
h + PeD

−1qh. (7.69)

Convergence of (7.69) can now be shown directly: Eigenvalues of Pe are

λk,l(Pe) =

{
0, k = l = 0,

1, else
(7.70)

and eigenvectors of Pe coincide with those of Ãh. From this follows that

λk,l(PeJÃh
) =

{
0, k = l = 0,

λk,l(JÃh
), else

(7.71)

such that for the iteration matrix of (7.69) follows that ρ(PeJÃh
) < 1.

Applying the projection (7.68) analogously to the Gauss-Seidel method leads to

p
(ν+1)
h = Pe

[
GÃh

p
(ν)
h + (L + D)−1qh

]
= PeGÃh

p
(ν)
h + Pe(L + D)−1qh (7.72)

where

GÃh
= −(L + D)−1U. (7.73)

As shown in [52] eigenvalues of GÃh
and JÃh

are related by λk,l(GÃh
) = λk,l(JÃh

)2 such that

ρ(PeGÃh
) = ρ(PeJÃh

)2 < 1 and convergence of (7.72) is guaranteed.

Implementation

1 template <typename Q, typename P>

2 void

3 dp2d_gauss_seidel(int rh, const GeMatrix <Q> &q, GeMatrix <U> &p)

4 {

5 np2d_setBoundaryConditions (p);

6 dp2d_gauss_seidel(rh, q, p);

7 np2d_normalize(p);

8 }

Listing 7.9: Red-Black Gauss-Seidel-iteration for the two-dimensional Neumann-Poisson prob-
lem.
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Figure 7.5: Stencil for the restriction. The value of the node on the coarse grid (black circle) is
the average of nodes on the fine grid (gray circles).

7.5.2 Restriction Operator

In order to motivate a definition of a restriction operator

R2h
h : V

( 1
2 , 1

2 )
h → V

( 1
2 , 1

2 )
2h (7.74)

consider a grid point (x̃i, ỹi) =
(
(2i + 1)h, (2j + 1)h

)
∈ Ω

( 1
2 , 12 )

2h . As can be seen from Figure 7.5

the nearest grid points on the finer grid Ω
( 1

2 , 12 )
h are

(x2i, y2i) = ((2i + 0.5)h, (2i + 0.5)h) , (x2i+1, y2i) = ((2i + 1.5)h, (2i + 0.5)h) ,

(x2i, y2i+1) = ((2i + 0.5)h, (2i + 1.5)h) , (x2i+1, y2i+1) = ((2i + 1.5)h, (2i + 1.5)h) .

This suggests to define the restriction by averaging values on the finer grid accordingly. For

v = (vi,j)
N
i,j=0 ∈ V

( 1
2 , 12 )

h an approximation ṽ = (ṽi,j)
n
i,j=0 ∈ V

( 1
2 , 12 )

2h is obtained by

ṽi,j =
1

4
(v2i,2j + v2i+1,2j + v2i,2j+1 + v2i+1,2j+1) , i, j = 0, . . . , n. (7.75)

If computations are carried out exactly it follows that

v ∈ Ph ⇒ ṽ = R2h
h v ∈ P2h. (7.76)

For the multigrid method this guarantees the solvability of the restricted problem. The right-
hand side of Ã2hp2h = q2h is defined as the restriction q2h := R2h

h rh for a residual rh ∈ Ph.
Combining the restriction with a Gram-Schmidt step, i. e. defining

R̃2h
h : V

( 1
2 , 12 )

h → V
( 1

2 , 1
2 )

2h , v 7→ PeR
2h
h v, (7.77)

ensures that solvability is not compromised through roundoff errors.

Implementation

Listing 7.10 illustrates a simple implementation of the restriction stencil defined in (7.75).

1 template <typename V, typename VC >

2 void

3 np2d_restriction(const GeMatrix <V> &v, GeMatrix <VC > &vc)

4 {

5 int i0 = vc.firstRow ()+1;

6 int i1 = vc.lastRow ()-1;
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7 int j0 = vc.firstCol ()+1;

8 int j1 = vc.lastCol ()-1;

9

10 for (int i=i0 , I=2* i0; i<=i1; ++i, I+=2) {

11 for (int j=j0, J=2* j0; j<=j1; ++j, J+=2) {

12 vc(i,j) = 0.25*( v(I,J) + v(I+1,J) + v(I,J+1) + v(I+1,J+1));

13 }

14 }

15 }

Listing 7.10: Computation of the restriction.

7.5.3 Prolongation Operator

The prolongation operator

P h
2h : V

( 1
2 , 1

2 )
2h → V

( 1
2 , 1

2 )
h (7.78)

can be defined through bilinear interpolation as illustrated in Figure 7.6. In the prolongation
each point on the coarse grid contributes to its four neighboring grid points. Denoting as before
the grid function on the coarse and fine grids by ṽ and v the corresponding stencil of prolongation
operator is given by

v2i,2j =
3

4

(
1

4
ṽi−1,j +

3

4
ṽi,j

)
+

1

4

(
1

4
ṽi−1,j−1 +

3

4
ṽi,j−1

)
, (7.79)

v2i,2j+1 =
1

4

(
1

4
ṽi−1,j+1 +

3

4
ṽi,j+1

)
+

3

4

(
1

4
ṽi−1,j +

3

4
ṽi,j

)
, (7.80)

v2i+1,2j =
3

4

(
3

4
ṽi,j +

1

4
ṽi+1,j

)
+

1

4

(
3

4
ṽi,j−1 +

1

4
ṽi+1,j−1

)
, (7.81)

v2i+1,2j+1 =
3

4

(
3

4
ṽi,j +

1

4
ṽi+1,j

)
+

1

4

(
3

4
ṽi,j+1 +

1

4
ṽi+1,j+1

)
. (7.82)

where i, j = 0, . . . , n.

Implementation

Listing 7.11 outlines an implementation of the prolongation operator. The stencil (7.82) is
realized in lines 12-13.

1 template <typename VC, typename V>

2 void

3 np2d_prolongation(const GeMatrix <VC> &vc , GeMatrix <V> &v)

4 {

5 int i0 = vc.firstRow ()+1;

6 int j0 = vc.firstCol ()+1;

7 int i1 = vc.lastRow ()-1;

8 int j1 = vc.lastCol ()-1;

9

10 for (int i=i0 , I=2* i0; i<=i1; ++i, I+=2) {

11 for (int j=j0, J=2* j0; j<=j1; ++j, J+=2) {

12 v(I+1,J+1)+= 0.75*(0.75* vc(i, j) + 0.25* vc(i+1, j))

13 + 0.25*(0.75* vc(i,j+1) + 0.25* vc(i+1,j+1));

14

15 // analogously update v(I,J), v(I,J+1), v(I+1,J)

16

17 }

18 }

19 np2d_bc (v);

20 }

Listing 7.11: Computation of the prolongation.
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Figure 7.6: Stencil for the restriction. The value of the node on the coarse grid (black circle) is
the average of nodes on the fine grid (gray circles).

7.6 Parallelization

The parallelization of the Navier-Stokes solver introduced in Section 7.4 following the same
pattern illustrated in Section 6.6. The implementation of DistributedGridVector2D can be
easily generalized for staggered grids as outlined in Listing 7.12.

1 template <bool DirectionX , bool DirectionY >

2 class DistributedStaggeredGridVector2D

3 : public Vector < DistributedStaggeredGridVector2D >

4 {

5 public :

6 typedef GeMatrix <FullStorage <double , RowMajor > > Grid;

7

8 DistributedStaggeredGridVector2D (const MpiCart &_mpiCart , int rh);

9

10 // ...

11

12 void setGhostNodes();

13

14 MpiCart mpiCart ;

15 int rh , N;

16 int i0 , i1 , j0, j1;

17 Grid grid;

18 MPI :: Datatype MpiRow , MpiCol ;

19 };

Listing 7.12: Staggered grid vector distributed accross the processor grid.

Typedef for grid functions are adapted accordingly:

1 typedef DistributedStaggeredGridVector2D <false , true > GridVectorU ;

2 typedef DistributedStaggeredGridVector2D <true , false > GridVectorV ;

3 typedef DistributedStaggeredGridVector2D <true , true > GridVectorP ;
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The components developed in Section 7.4 can be reused. The wrappers for these components
are almost identical except for a subsequent update of ghost nodes:

1 void

2 computeImpulse(const GridVectorU &u, const GridVectorV &v,

3 double dt, double gamma , double re , double fx , double fy ,

4 GridVectorU &us, GridVectorV &vs)

5 {

6 // ... call low -level component ...

7 us. setGhostNodes();

8 vs. setGhostNodes();

9 }

The parallelization of the multigrid method requires the parallelization of the smoothing, re-
striction and prolongation operators. This can be accomplished analogously while reusing the
implementations developed in Section 7.5.

7.7 The ‘Pot and Ice’ Problem

The International Young Physicists’ Tournament (IYPT)5 is a competition among teams of
secondary school students in their ability to solve complicated scientific problems, to present
solutions to these problems in a convincing form and to defend them in scientific discussions,
called ‘Physics Fights’. Since 1995 a German team has participated in the IYPT and achieved
considerable results. However, for the tournament in 2003 they failed to solve the following
problem:

Pot and Ice: It is sometimes argued that to cool a pot efficiently one should
put ice above it. Estimate to what extent this is more efficient than if the ice
is put under the pot.

In 2006 this problem was treated numerically in collaboration with Bernd Kaifler, a physics
student at Ulm University and once member of the German team in 2003. Components from
the previous sections can be used for the implementation of a numerical simulation. In the
remaining, a two-dimensional model for the ‘Pot and Ice’ problem and its numerical treatment
will be outlined only briefly.

Like for the lid driven cavity problem the fluid gets considered on the unit square Ω = (0, 1)2.
Beside the velocity and pressure fields the model also incorporates the temperature field

T : Ω× R
+ → R.

In addition to equations (7.10) and (7.11) the flow is governed by the energy equation

∂T

∂t
+ ~u · ∇T =

1

Re Pr
∆T (7.83)

where

Pr =
ν

α

denotes the dimensionless Prandtl number [39] which approximates the ratio of viscosity and
thermal diffusivity α. Equations (7.10), (7.11) and (7.83) are coupled as the volume forces now
also include buoyant forces. Using the so called Boussinesq approximation[47] the forces on the
right-hand side of (7.10) and (7.11) are changed to

~F =

(
fx

fy

)
=

(
fx

fy(1− βT )

)
, (7.84)

5http://www.iypt.org

http://www.iypt.org
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(a) t = 0.1

(b) t = 20 (c) t = 21

(d) t = 22 (e) t = 23

Figure 7.7: Numerical simulation of the ‘Pot and Ice’ problem.
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(a) t = 24 (b) t = 25

(c) t = 26 (d) t = 27

(e) t = 28 (f) t = 29

Figure 7.8: Numerical simulation of the ‘Pot and Ice’ problem.
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where β denotes the dimensionless thermal expansion coefficient. Initial and boundary conditions
for the velocity field are

~u(~x, 0) = ~0, ~x ∈ Ω, (7.85)

~u(~x, t) = ~0. ~x ∈ ∂Ω, t ≥ 0 (7.86)

Let Γ0 denote the cooled side of the pot (e. g. Γ0 = {(x, 1) : 0 ≤ x ≤ 1} if ice is put above). Then
Dirichlet boundary conditions are imposed on Γ0 for cooling the fluid

T (~x, t) = 0, ~x ∈ Γ0, t ≥ 0 (7.87)

and Neumann boundary conditions

T (~x, t)

∂~n
= 0, ~x ∈ ∂Ω Γ0, t ≥ 0, (7.88)

on the remaining sides are used to model an isolated pot. The initial temperature of the fluid is
defined through the initial condition

T (~x, 0) = T0, ~x ∈ Ω. (7.89)

The discretization of the above model can be carried out analogously to the lid driven problem
using the finite difference method. Figures 7.7 and 7.8 contain different snapshots of a numerical
simulation where a pot with water is cooled from above. In this simulation the water initially
had a temperature of 20o C. Subfigures 7.7(a) and 7.7(b) illustrate a typical phenomenon for this
problem: At first, a horizontal layer of cooled water spreads out at the top. This is solely caused
by diffusion and for several time steps there is no convection in the fluid. Within this period of
time the pot gets cooled only slowly. However, as can be deduced from Subfigures 7.7(c) and
7.7(d) this is an unstable state. In physical experiments small agitations or imperfections of the
fluid cause the sudden creation of convection. In numerical simulations this is caused by round
off errors.

An implementation of a numerical scheme for the ‘Pot and Ice’ problem is included in the
examples directory of FLENS. Videos visualizing the numerical simulation are hosted on the
FLENS website [45].

7.8 Summary of the Chapter

This chapter illustrated how the FLENS library can be used as an effective building block for the
development of scientific software in the field of computational fluid dynamics (CFD). It was in
particular exemplified how the utilization of FLENS can enhance the collaboration between nu-
merical analysts, specialist in high-performance computing and researchers in the CFD domain.
Initially, mathematical models of some standard test problems in fluid dynamics were outlined.
Subsequently, the finite difference method was applied to obtain a simple numerical scheme.
Using FLENS as a building block enabled the rapid development a simple Navier-Stokes solver.
This was possible for different reasons. On the one hand, the implementation of the numerical
schemes could be realized close to the mathematical notation. On the other hand, FLENS pro-
vided reusable components like the multigrid method which could be easily adapted. While this
illustrated the effective collaboration between the domains of CFA and numerical analysis in this
development process, the performance aspect was initially ignored. However, FLENS endorsed
the development of software components which can be tuned for performance subsequently. Fur-
thermore, the parallelization of the Navier-Stokes solver could be realized immediately by reusing
these components.



8 The Finite Element Method

In this chapter the two-dimensional Dirichlet-Poisson problem again serves as a model problem.
Compared to Chapter 6 the considered domain is allowed to be more general to motivate the usage
of the Finite Element Method (FEM) for discretization. The scope of this chapter was motivated
by [1]. In this paper it was demonstrated how Matlab can be utilized to implement the FEM (for
a slightly more general problem) in a very compact and expressive form. The presentation of an
implementation based on FLENS intends to demonstrate how libraries dedicated to the FEM
could take advantage of FLENS by using it as a building block. Further, the material developed
for this chapter can be used for programming assignments within introductory courses on FEM.

Based on [11], Section 8.1 briefly covers the variational formulation of the Dirichlet-Poisson
problem. Following [43], utilizing the FEM for the discretization and practical aspects for the
later implementation are introduced in Sections 8.2 and 8.3.3. The implementation of the FEM is
illustrated in Section 8.4. Sparse matrix types and solvers for sparse systems of linear equations
in FLENS are outlined in Section 8.5.

8.1 The Dirichlet-Poisson Problem and its Variational For-

mulation

Consider a two-dimensional domain Ω ⊂ R
2 where Ω is assumed to be a bounded Lipschitz

domain with piecewise polygonal boundary Γ = ∂Ω. Defining L as the Laplace operator, i. e.
Lu := ∆u, the Dirichlet-Poisson problem reads:

For given functions f ∈ C0(Ω) and g ∈ C0(Γ) find u ∈ C2(Ω) ∩C0(Ω̄) that satisfies:

− Lu = f in Ω, (8.1)

u = g on Γ. (8.2)

Existence of a solution u depends on the regularity of the boundary Γ. However, regularity
of a bounded Lipschitz domain is not sufficient as shown by a counter example in [11] (page
33). Furthermore, even if a solution exists, higher derivatives of u might be unbounded, making
convergence analysis of numerical methods impossible. This motivates to consider a generalized
formulation of the problem.

8.1.1 Variational Formulation

For u ∈ C2(Ω) ∩ C0(Ω̄) it follows from Green’s theorem that for all v ∈ C∞
0 (Ω)

(−Lu, v)0 = (−∆u, v)0 =

∫

Ω

(−∆u) vdx =

∫

Ω

∇u∇v dx =: a(u, v). (8.3)

Using the bilinear form a(·, ·) it follows that a solution u of (8.1) and (8.2) satisfies

a(u, v) = (f, v)0 for v ∈ C∞
0 (Ω) (8.4)

129
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Equation (8.4) motivates the variational formulation. As shown for example in [11], a unique
solution for problem (8.4) exists if u and v are taken from Sobolev spaces H1(Ω) and H1

0 (Ω)
respectively. This leads to the variational formulation of the Poisson problem (8.1) and (8.2):

Find u ∈ U := H1(Ω) such that

a(u, v) = (f, v)0 for v ∈ V := H1
0 (Ω) (8.5)

u− g ∈ H1
0 (Ω). (8.6)

For g ∈ H1(Ω) and f ∈ L2(Ω) this is a well-posed problem. Existence of a solution can be
proven using the Lax-Milgram theorem. The space U is referred to as trial space and V as test
space. Equation (8.6) can be regarded as weak formulation of the boundary condition (8.2) with
g extended to H1(Ω).

The weak boundary condition (8.6) motivates the substitution ũ := u − g and leads to the
homogenized variational problem, where test and trial spaces coincide:

Find ũ ∈ U = V := H1
0 (Ω) such that

a(ũ, v) = (f, v)0 − a(g, v) for v ∈ V. (8.7)

Hence we can concentrate on the homogeneous problem in the sequel. Then u := ũ + g solves
the variational problem associated to the Poisson problem.

8.1.2 Strong and Weak Solutions

A solution of (8.1) and (8.2) is denoted as a strong or classic solution whereas a solution of the
associated variational problem (8.5) and (8.6) is referred to as a weak solution. These terms are
justified as every strong solution is also a weak solution. Many practical problems incorporate
restrictions that merely allow for proving the existence of a weak solution. For partial differential
equations modeling physical problems, it often can be shown that weak solutions constitute
adequate solutions of the original problem. Further, a weak solution of the Poisson problem that
lies in the space C2(Ω) ∩ C0(Ω̄) is also a strong solution.

8.2 Discretization: Finite Element Method

Numerical solutions are obtained by solving a discretized version of (8.7). Following the Galerkin
method, discretization is achieved by replacing trial and test spaces with finite dimensional
spaces. Different methods for the construction of finite dimensional spaces approximating trial
and test spaces exist. One of these methods is the Finite Element Method exemplified in the
following.

Using the Finite Element Method, the finite dimensional spaces are constructed based on a
triangulation of the domain Ω. In the following, Th denotes a regular triangulation that consists
merely of triangles while in general it also might contain quadrilaterals. The index h denotes
the grain size of the mesh, e. g. the maximal diameter of a triangle. Regular triangulation means
that

1. elements of Th are closed triangles,

2. the domain Ω is covered by the triangles, i. e.
⋃

T∈Th

T = Ω̄ and

3. intersection of two different triangles results in either a point, a common edge or is empty.

A triangle T ∈ Th is referred to as element and its vertices as nodes.
The simplest variant of the Finite Element Method is obtained by replacing the space U =

H1
0 (Ω) with

Uh := {ϕ ∈ C(Ω) : ϕ|T is linear on T ∈ Th}.



8.2 Discretization: Finite Element Method 131
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Figure 8.1: Example for a triangulation with a total of N = 15 nodes and M = 4 inte-
rior nodes. Interior nodes {x6, x7, x9, x10} can formally be distinguished from boundary nodes
{x1, x2, x3, x4, x5, x8, x11, x12, x13, x14, x15} using the permutation ν.

Using interpolation, a basis (ϕ1, . . . , ϕN ) for Uh can be constructed such that

ϕi(xj) = δi,j j = 1, . . . , N,

for nodes x1, . . . , xN ∈ Th. This is called a nodal basis of Uh. Because of the boundary condition
it is important to distinguish whether a node lies on the boundary or in the interior of the
domain. As illustrated in Figure 8.1 this can be achieved by defining a permutation

ν : {1, . . . , N} → {1, . . . , N} such that

{
xν1 , . . . , xνM

∈ Ω,

xνM+1 , . . . , xνN
∈ ∂Ω,

(8.8)

where M < N and νl := ν(l) for l = 1, . . . , N . Now elements of Uh can be represented1 as

uh(x) =

M∑

l=1

ulϕνl
(x)

︸ ︷︷ ︸
=:ũh(x)

+

N∑

l=M+1

ulϕνl
(x)

︸ ︷︷ ︸
=:gh(x)

(8.9)

The sum in (8.9) corresponds to the substitution used in (8.7). If gh is chosen as the interpolant
of the boundary function g, its coefficients are uniquely given as

ul = g(xνl
), l = M + 1, . . . , N. (8.10)

Hence uh is uniquely determined through ũh ∈ Vh := span{ϕνl
: 1 ≤ l ≤ M} ⊂ V . Thus, the

discretized problem of (8.7) can be stated as:

1Were possible and appropriate the following loose convention will be used: Indices k and l are used in
conjunction with the reordering introduced by ν. Whereas i and j refer to the original index order.
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Find ũ = (u1, . . . , uM ) ∈ R
M such that

M∑

l=1

ul a(ϕνl
, ϕνk

) = (f, ϕνk
)0 −

N∑

l=M+1

ul a(ϕνl
, ϕνk

), k = 1, . . . , M. (8.11)

Let (u1, . . . , uM ) be the solution of (8.11) then uh(xνl
) = ul for l = 1, . . . , N . Therefore, nodal

values of the numerical solution uh are given by

uh(xi) = uηi
, i = 1, . . . , N, (8.12)

where η denotes the inverse permutation of ν. For the later proceeding and in particular for the
implementation, η is used to determine whether a node xi lies on the boundary or in the interior
of the domain:

xi ∈
{

Ω, if ηi ≤M,

∂Ω, if ηi > M.
(8.13)

8.3 Assembling

Problem (8.11) is equivalent to a linear system of equations Au = b with

A =
(
a(ϕνk

, ϕνl
)
)

k,l
∈ R

M×M (8.14)

denoted as stiffness matrix and right-hand side

b =
(
(f, ϕνk

)0 −
N∑

l=M+1

a(ϕνl
, ϕνk

)ul

)

k
∈ R

M . (8.15)

For elliptic PDEs like the Poisson problem the stiffness matrix A is positive definite. This readily
follows as for this problem the bilinear form is positive by definition (8.3). Further the choice of
the nodal basis of Vh implies that A is sparse.

Computing the elements of A and b is referred to as assembling. Technical details used in the
later implementation are illustrated in the following.

8.3.1 Evaluation of the Bilinear Form

Both the stiffness matrix (8.14) as well as the right-hand side (8.15) require the evaluation of

a(ϕi, ϕj) =

∫

Ω

∇ϕi(x) · ∇ϕj(x) dx

=

|T |∑

m=1

∫

Tm

∇ϕi(x) · ∇ϕj(x) dx

︸ ︷︷ ︸
=:A

(m)
i,j

. (8.16)

Due to its construction, a base function ϕi is only non-zero on triangles that contain xi as a

node. Therefore, a summand A
(m)
i,j in (8.16) can only be non-zero if xi and xj are nodes of a

triangle Tm. Hence it is favorable to iterate over all triangles Tm ∈ T as this allows for computing

only the the non-zero summands A
(m)
i,j in (8.16). For a triangle Tm with vertices (xi1 , xi2 , xi3 )

non-zero entries of A(m) are given by

A
(m)
ir ,is

=

∫

Tm

∇ϕir
(x) · ∇ϕis

(x) dx, r, s = 1, 2, 3. (8.17)
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Figure 8.2: Mapping the reference triangle T̂ onto a triangle Tm with vertices (xi1 , xi2 , xi3 ).

What remains is the numerical evaluation of the integral in (8.17) which is performed on a
reference triangle T̂ with vertices x̂1 = (0, 0)T , x̂2 = (1, 0)T and x̂3 = (0, 1)T . Defining the
affine-linear mapping (see Figure 8.2)

Fm(x̂) := Sx̂ + xi1 with S := (xi2 − xi1 , xi3 − xi1 )

it follows that Fm(T̂ ) = Tm and in particular Fm(x̂r) = xir
for r = 1, 2, 3. This mapping allows

the reduction of a base function ϕir
to a base function defined on T̂ as follows:

Nr : T̂ → R, Nr(x̂) := ϕir
(Fm(x̂)), r = 1, 2, 3.

These base functions on T̂ are explicitly known:

N1(x̂) = 1− (1, 1)x̂, N2(x̂) = (1, 0)x̂, N3(x̂) = (0, 1)x̂.

Applying the mapping Fm to (8.17) leads to

A
(m)
ir ,is

=

∫

T̂

C∇Nr(x̂) · ∇Ns(x̂) |det(S)| dx̂, (8.18)

where C = (ST S)−1. As the partial derivatives of Nr are constant the value of this integral can
be stated explicitly in terms of C and S. Consequently all contributions arising from Tm can be
computed in a single sweep (see [43]):

Ã(m) :=
(
A

(m)
ir ,is

)
r,s=1,2,3

= γ1S1 + γ2S2 + γ3S3. (8.19)

where γ1 = c11|det(S)|, γ2 = c12|det(S)|, γ3 = c13|det(S)| and

S1 = 1
2




1 −1 0
−1 1 0
0 0 0



, S2 = 1
2




2 −1 −1
−1 0 1
−1 1 0



, S3 = 1
2




1 0 −1
0 0 0
−1 0 1



.

8.3.2 Integrals for the Right-Hand Side

Assembling the right-hand side (8.15) requires the evaluation of

(f, ϕi)0 =

∫

Ω

f(x)ϕi(x) dx =

|T |∑

m=1

∫

Tm

f(x)ϕi(x) dx

︸ ︷︷ ︸
=:b

(m)
i

,
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where i refers to an internal node (i .e. ηi ≤M). Again, a summand b
(m)
i can only be non-zero if

xi is a node of triangle Tm. For a triangle Tm = (xi1 , xi2 , xi3) the relevant entries are computed
on the reference triangle by

b
(m)
ir

=

∫

Tm

f(x)ϕir
(x) dx

=

∫

T̂

f̂(x̂)Nr(x̂) |det(S)| dx, r = 1, 2, 3 (8.20)

where f̂(x̂) := f(Fm(x̂)). In general (8.20) can not be computed exactly and instead a quadrature
formula is used. This leads to

b̃(m)
r := b

(m)
ir
≈

P∑

p=1

ωpf̂(ŷp)Nr(ŷp) |det(S)|, r = 1, 2, 3 (8.21)

with weights ω1, . . . , ωP and quadrature points ŷ1, . . . , ŷP . For the trapezoidal rule these are
given as ωp = 1

6 and ŷp = x̂p for p = 1, 2, 3 and therefore

b
(m)
ir
≈ 1

6
f̂(x̂r) |det(S)|. (8.22)

8.3.3 Assembling the System of Linear Equations

An assembling routine starts with an ‘empty’ stiffness matrix A and a zero-initialized right-
hand side vector b. For each Tm ∈ T entries of Ã(m) and b̃(m) are computed and then used to
sequentially update A and b.

Due to the fact that entries of Ã(m) and b̃(m) have to be addressed to corresponding entries of
A and b, quite some effort in bookkeeping is required. If nodes of Tm are denoted as (xi1 , xi2 , xi3 ),
a corresponding mapping is given by

Ã(m)
r,s = A

(m)
ir ,is

= A(m)
νk,νl

,

b̃(m)
r = b

(m)
ir

= b(m)
νk

,

where r, s ∈ {1, 2, 3} and k := ηir
, l := ηis

. From (8.14) and (8.15) it follows that

A(m)
νk,νl

contributes to

{
Ak,l if k, l ≤M,

bk if k ≤M and l > M
(8.23)

and analogously
b(m)
νk

contributes to bk if k ≤M. (8.24)

Pseudo-code for the assembling procedure is given in Algorithm 8.1. The algorithm takes ad-

vantage of the fact that Ã(m) is symmetric. Only entries Ã
(m)
r,s and b̃

(m)
r for 1 ≤ s ≤ r ≤ 3 are

accessed.

Algorithm 8.1 (Assembling Stiffness Matrix and Right-Hand Side).

for each Tm ∈ T
denote nodes of Tm as (xi1 , xi2 , xi3 )

compute Ã(m) and b̃(m)

for r = 1, 2, 3
k := ηir

if k ≤M

bk → bk + b̃
(m)
r

end



8.4 Implementation 135

for s = r, ..., 3
l := ηis

if k > M and l > M
next s

end

if k ≤M and l ≤M

Ak,l → Ak,l + Ã
(m)
r,s

else

k̃ := min{k, l}
l̃ := max{k, l}
bk̃ → bk̃ − ul̃Ã

(m)
r,s

end

next s

next r

next Tm

For the sake of efficiency an implementation has to exploit the sparsity as well as the symmetry
of A. With respect to sparsity an implementation can utilize adequate matrix types as illustrated
in Section 8.5. Symmetry can be exploited for example, by storing either the upper or lower
triangular part of A. However, the concrete technical realization in general depends on the type
of solvers that gets used for the sparse system of linear equations.

8.4 Implementation

An implementation of the finite element method basically consists of the following components:

1. A mesh generator creating a triangulation T for a given domain Ω.

2. Data structures for accessing and manipulating elements of the mesh.

3. Routines for assembling and solving the linear system of equations.

4. Post-processing routines, e. g. for the visualization of the numerical solutions.

Merely the implementation of the components outlined in 2. and 3. is covered in this work.
The basic intention in this respect is to demonstrate how the extensibility of FLENS and the
reusability of its components can be exploited. Further, mesh generation for rather general
domains is a sophisticated topic on its own. The implementation therefore assumes that the
triangulation can be created by an external software and is available in a common file format as
outlined in Section 8.4.1.

The implementation of the FEM for the Dirichlet-Poisson problem basically consist of the
Mesh and FEM classes introduced in Subsection 8.4.1 and 8.4.2 respectively. The classes are not
part of the official FLENS release and merely intend to indicate how dedicated finite element
libraries could make use of FLENS.

Within an introductory course for the FEM, the material covered in this section could be
used for a one-week homework assignment. The Mesh class could be provided as a teaching aid
and the students assigned to implement the methods of the FEM class.

8.4.1 The Mesh Class

A mesh specifies the triangulation of the domain Ω through a list of nodes and a related list
of triangles. Hereby ‘related’ means that for nodes (x1, y1), . . . , (xN , yN) a triangle T ∈ T is
defined through a triple of node indices. For example, (i1, i2, i3) refers to a triangle with vertices
(xi1 , yi1), (xi2 , yi2) and (xi3 , yi3).
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Data structures for the triangulation are encapsulated in the Mesh class. The class design
was driven by considering what operations are most essential for assembling the stiffness matrix
and the right-hand side.

Interface

The interface is intended to provide the minimal set of methods needed to realize the FEM.
Hence methods needed to perform a mesh refinement are not intended in this example. This
means after creation of a Mesh object subsequent changes to the mesh are not possible, e.g.
adding, removing or changing nodes or triangles. This is only a self-imposed restriction for the
sake of keeping interface and implementation as simple as possible.

When a Mesh object gets instantiated, nodes and triangles are imported from files and meth-
ods provide read access to nodes and triangles. Further, the permutations ν and η defined in
Section 8.2 as well as a method that returns the number of free nodes M are available through
the following interface:

1 class Mesh

2 {

3 public :

4 // ...

5

6 Mesh(const char *nodesFile , const char *trianglesFile);

7

8 int numTriangles() const ;

9 Triangle triangle (int index ) const;

10

11 int numNodes () const;

12 Node node(int index) const;

13

14 int numFreeNodes() const ;

15 int nu(int index) const;

16 int eta(int index) const ;

17

18 // ...

19 };

Listing 8.1: Mesh class for handling the triangulation.

So far types Triangles and Node (in lines 9 and 12) are not yet specified. However, for un-
derstanding the interface it is only relevant that these types comply to the following interface
convention: Both classes have an overloaded call operator (). For a Triangle object t the node
index of the r-th vertex can be retrieved by t(r). Using the node method these indices can be
used to retrieve corresponding node objects. Similarly the i-th coordinate of a Node object n

can be accessed by n(i). Usage becomes self-explanatory considering a little code example for
printing coordinates of the triangle vertices line-by-line:

for (int m=1; m<=mesh.numTrinagles(); ++m) {

Triangle t = mesh.triangle (m);

for (int r=1; r <=3; ++r) {

Node n = mesh.node(t(r));

cout << "(" << n(1)

<< "," << n(2) << ") ";

}

cout << endl;

}

Obviously the restriction of interface to two dimensions could easily be generalized without much
effort.

Implementation

For the following implementation of the Mesh class it is assumed that the triangulation is stored
in two separate text files following a simple and very common format [43]. One file stores node
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coordinates line-by-line whereas the total number of nodes is stored in the first line:

<Number of nodes >

<x1 > <y1 >

<x2 > <y2 >

...

<xN > <yN >

The topology of the mesh is described in the second file. The first line contains the total number
of triangles followed by lines of index triples referring to vertices:

<Number of triangles >

<t1_1 > <t1_2 > <t1_3 >

<t2_1 > <t2_2 > <t2_3 >

...

Most mesh generators support a slightly more general format in order to support more than two
dimensions. However it is fairly easy to convert these formats using simple shell or PERL scripts.

The Mesh constructor reads the files and stores nodes and triangles row-wise in matrices
nodes and triangles. Matrix types are in both cases of type GeMatrix using a full storage
scheme. For nodes the element type is double while for triangles (storing only indices) it is
int. For convenience typedefs NodeTable and TriangleTable are defined.

Now the i-th node is simply a vector view of the i-th row of nodes. Similarly vector views
come in place to access single triangles. Hence types for Node and Triangle are defined as
adequate types for vector views:

1 class Mesh

2 {

3 public :

4 typedef GeMatrix <FullStorage <double , RowMajor > > NodeTable ;

5 typedef GeMatrix <FullStorage <int , RowMajor > > TriangleTable;

6

7 typedef const DenseVector <ConstArrayView <int > > Triangle ;

8 typedef const DenseVector <ConstArrayView <double > > Node;

9 // ....

10

11 private :

12 NodeTable nodes ;

13 TriangleTable triangles ;

14 // ...

15 };

Listing 8.2: Typedefs in the mesh class for nodes and triangles.

The implementation of method node(int) simply creates and returns a view referencing the i-th
row of nodes:

1 Node node(int i) const

2 {

3 return nodes (i,_);

4 }

Listing 8.3: Mesh class: implementation of method node(int).

Method triangle is implemented analogously. Permutations ν and η are internally realized
through integer vectors. Vector nu stores ν1, . . . , νN and eta values η1, . . . , ηN :

1 class Mesh

2 {

3 // ...

4

5 private :

6 // ...

7 int _numFreeNodes;

8 DenseVector <Array <int > > _nu , _eta;

9 };

Listing 8.4: Mesh class: Vectors for storing the permutations ν and η.
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The number of free nodes M is stored in variable numFreeNodes. Methods nu, eta and
numFreeNodes are implemented as simple wrappers for accessing the internal data structures.

The permutation vectors are setup in the constructor after importing the mesh. Hereby the
nodes belonging to the boundary are determined in a first step. This happens by iterating over
all triangles and thereby counting occurrences of edges. If an edge only occurs once then both
endpoints belong to the boundary. Based on the set of boundary nodes the reordering conforming
to (8.8) can be determined in a second step.

8.4.2 FEM for the Poisson Problem

Methods for assembling the linear system of equations are gathered in class FEM. Solving is carried
out using an external solver. Usage of the Mesh class allows an implementation of the assembling
routine that directly reflects the pseudo-code Algorithm 8.1. Before going into relevant details
of the implementation, a look on the FEM class interface already gives a picture of the basic idea.

Interface

Functions f and g for the Poisson problem (8.1, 8.2) can be implemented by the user outside the
FEM class. These functions receive coordinates x as const Node object and return the function
value as double.

Using the FEM class the Dirichlet-Poisson problem can be solved in three steps:

1. Creation of a FEM object which (besides some internal data structures) initializes a Mesh

object.

2. Assembling the linear system of equations.

3. Solving these and writing the solution to a file.

Listing 8.5 illustrates the interface of the FEM class. Method assemble (line 11) assembles A
and b. The stiffness matrix gets stored in a matrix of type SparseSymmetricMatrix<CSR<T> >

(line 23). This is a FLENS matrix type for symmetric sparse matrices which gets introduced in
more detail in Section 8.3.3. This should cause no confusion as its usage is very similar to those
matrix types introduced in Chapter 4.

1 class FEM

2 {

3 public :

4 typedef Mesh :: Triangle Triangle ;

5 typedef Mesh ::Node Node;

6 typedef double (*Func )( const Node &);

7

8 FEM (const char *nodesFile , const char *trianglesFile ,

9 const Func &f, const Func &g);

10

11 void assemble ();

12

13 void solve ();

14

15 void writeSolution(const char *filename );

16

17 private :

18 void compute_Am_bm(const Triangle &t);

19

20 Mesh mesh;

21 Func f, g;

22 DenseVector <Array <double > > u, b;

23 SparseSymmetricMatrix <CSR <double > > A;

24

25 DGeMatrix Am;

26 DenseVector <Array <double > > bm;

27
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28 typedef GeMatrix <FullStorage <double , RowMajor > > DGeMatrix ;

29 std ::vector <DGeMatrix > S;

30

31 };

Listing 8.5: Class for the Finite Element Method.

The assemble method makes use of method compute_Am_bm which computes Ã(m) and b̃(m)

according to (8.19) and (8.21). Matrices S1, S2 and S3 from (8.19) are stored in a STL vector S,
which gets initialized by the constructor. The result of compute_Am_bm gets stored in Am and bm

serving as quasi-global variables within the FEM object.
Method solve calls an external solver for the linear system of equations to find a solution

of (8.11). In a slightly more flexible implementation the solver might be passed via a template
parameter or function pointer. According to (8.12) writeSolutionwrites the numerical solution
to a file.

From the user’s point of few the Poisson problem can be solved in ‘three and a half lines’ of
code:

FEM fem (" nodes ", "triangles ", f, g);

fem.assemble ();

fem.solve ();

fem.writeSolution("sol ");

But obviously the real magic lies in the implementation of compute_Am_bm and assemble as
shown next.

Implementation

In order to compute Ã(m) according to (8.19) matrix C = (ST S)−1 can be computed by applying
Laplace’s formula. For S = (z1, z2) := (x2 − x1, x3 − x1) it follows that

C =
1

det(S)2

(
zT
2 z2 −zT

1 z2

−zT
2 z1 zT

1 z1

)
.

For the computation of ˜b(m) the trapezoid rule (8.22) is used. Following rather closely the
mathematical notation the implementation is given by:

1 void FEM :: compute_Am_bm(const Triangle &t)

2 {

3 const Node &x1 = mesh.node(t(1)),

4 &x2 = mesh.node(t(2)),

5 &x3 = mesh.node(t(3));

6

7 DenseVector <Array <double > > z1 = x2 -x1 ,

8 z2 = x3 -x1;

9

10 double absDetZ = std ::abs(det (z1 ,z2));

11

12 double gamma [3];

13 gamma [0] = dot (z2 , z2)/ absDetZ ,

14 gamma [1] = -dot (z1 , z2)/ absDetZ ,

15 gamma [2] = dot (z1 , z1)/ absDetZ ;

16

17 Am = gamma [0]*S[0] + gamma [1]*S[1] + gamma [2]*S[2];

18

19 bm(1) = f(x1)* absDetZ /6;

20 bm(2) = f(x2)* absDetZ /6;

21 bm(3) = f(x3)* absDetZ /6;

22 }

Listing 8.6: Computing entries of the local stiffness matrix and right-hand side.

The following implementation of the assembling routine closely matches the pseudo-code given
in Algorithm 8.1:
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1 void

2 FEM :: assemble ()

3 {

4 int M = mesh. numInteriorNodes ();

5 for (int m=1; m<= mesh. numTriangles(); ++m) {

6 Triangle t = mesh.triangle (m);

7 compute_Am_bm(t);

8 for (int r=1; r <=3; ++r) {

9 int k=mesh.eta (t(r));

10 if (k<=M) {

11 b(k) += bm(r);

12 }

13 for (int s=r; s <=3; ++s) {

14 int l=mesh.eta(t(s));

15 if ((k>M) && (l>M)) {

16 continue ;

17 }

18 if ((k<=M) && (l<=M)) {

19 A(k,l) += Am(r,s);

20 } else {

21 int k_ = std ::min(k,l);

22 int l_ = std ::max(k,l);

23 b(k_) -= Am(r,s)*u(l_);

24 }

25 }

26 }

27 }

28 A. finalize ();

29 }

Listing 8.7: Assembling routine.

The fact that A is not of some general matrix type becomes only evident in the statement on line
28: ‘A.finalize()’. Details about concepts and the implementation of sparse matrix types in
FLENS and solvers for corresponding linear systems of equations are given next.

8.5 Solvers for Sparse Linear Systems of Equations

Recall, in Chapters 6 and 7 the finite difference method has led to coefficient matrices exhibiting
a very special structure. In these chapters dedicated matrix types were implemented exploiting
this structure. By utilizing these matrix types it was possible that numerical methods for solving
the systems of linear equations could achieve optimal efficiency.

The finite element method leads to sparse coefficient matrices with a more general structure.
Hence matrix types that are more flexible than those introduced in Chapters 6 and 7 are required.
An overview of different storage schemes that are suited for these types of matrices is given in
[22] and [14]. Each format provides features making it more or less favorable for certain tasks:

• The coordinate storage allows the initialization of a sparse matrix in arbitrary order. This
feature makes the format favorable for the assembling phase of the FEM. However, the
format is suboptimal for the computation of the matrix-vector product.

• The compressed row storage2 requires that initialization can be performed within a certain
order. The storage is compact and linear algebra operations like the matrix-vector product
can be realized very efficiently. Thus, iterative solvers like the cg-methods can be utilized
immediately. In addition, this format is appropriate for direct sparse solvers. Obviously,
compressed row storage is a favorable format for the solving phase.

The sparse matrix class introduced in this section uses the coordinate storage format during the
initialization, and afterwards converts the format to compressed row storage.

2This scheme is also known as compressed sparse row (CSR) format.
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8.5.1 Storage Schemes for Sparse Matrices

Basically all storage schemes for sparse matrices follow a similar concept. Non-zero elements of
the sparse matrices are stored linear in memory together with at most a few additional zeros.
Additional arrays are then used to describe the position of these values in the original matrix.
In order to exemplify the different schemes the following 5× 6 matrix

A =





a1,1 a1,2

a2,2 a2,6

a3,1 a3,3 a3,4

a4,4

a5,2 a5,5




(8.25)

with 10 non-zero entries will be utilized.

Coordinate Storage (COOR)

In COOR format a sparse M ×N matrix with n non-zero entries ai1,j1 , . . . , ain,jn
is stored using

three vectors values, rows and columns. All vectors are of length n. Indices i1, . . . , in are stored
in rows, indices j1, . . . , jn are stored in columns and values ai1,j1 , . . . , ain,jn

in values.
In the COORD representation of matrix A from (8.25) vectors values, rows and columns

all have length 10 and a possible occupation of the vectors is:

1 2 3 4 5 6 7 8 9 10
values a1,1 a1,2 a2,2 a2,6 a3,1 a3,3 a3,4 a4,4 a5,2 a5,5

rows 1 1 2 2 3 3 3 4 5 5
columns 1 2 2 6 1 3 4 4 2 5

Compressed Row Storage (CRS)

In CRS format a sparse M ×N matrix with n non-zero entries ai1,j1 , . . . , ain,jn
is stored using

three vectors values, columns and rows as follows:

• values is of length n and stores the non-zero elements (ai1,j1 , . . . , ain,jn
) of A. Elements

are stored row-wise, that means for 1 ≤ k < l ≤ n it follows that either ik < il or ik = il
and jk < jl.

• For each element values(k) the corresponding element columns(k) gives its column index,
i. e. columns stores indices (j1, . . . , jn).

• rows is of length M + 1 and keeps track of which element in values belongs to which row.
rows(i) refers to the first element in values belonging to the i-th row of A. This means
rows(i) = min{k | ik = i} for i = 1, . . . , M .
The number of non-zero elements of the i-th row is given as rows(i+1) -rows(i). In order
to keep this relationship valid for the last row, the value of rows(M + 1) has to be n + 1,
i. e. the number of non-zeros plus one. This could also be interpreted as the beginning of
an additional fictitious row.

From the definition of rows it follows that empty rows are not eligible. In this case a fill-in
zero is required.

In the CRS representation values and columns are of length 10, rows of length 6. Values are
given as

1 2 3 4 5 6 7 8 9 10
values a1,1 a1,2 a2,2 a2,6 a3,1 a3,3 a3,4 a4,4 a5,2 a5,5

columns 1 2 2 6 1 3 4 4 2 5
rows 1 3 5 8 9 11
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Definition of a new rows vector enables the support of matrix views referencing consecutive rows.
For instance

rows 5 8 9

together with values and columns from above represents a matrix view of A referencing rows 3
to 5. For the parallelization of the matrix vector product exactly these kind of views are needed.

A typical life cycle of a sparse matrix object was already observed in the above FEM example:
first the matrix gets set up, second a system of linear equation has to be solved.

8.5.2 FLENS Implementation of Sparse Matrices

The matrix types for BLAS and LAPACK introduced in Chapter 4 were realized based on the
storage schemes from Chapter 3. The concept of separating matrix types and storage schemes
also gets applied in the realization of sparse matrices.

Implementation of the CRS Scheme

For symmetric, hermitian or triangular matrices it is sometimes favorable that only the upper
or lower triangular part of the matrix gets stored. Whether the scheme stores a triangular part
or not, can be specified through the following enumeration type:

1 enum CRS_Storage {

2 CRS_General ,

3 CRS_UpperTriangular ,

4 CRS_LowerTriangular

5 };

For example, CRS General specifies that the scheme represents elements from a general matrix,
while CRS UpperTriangular defines that only the upper triangular part is stored.

Listing 8.11 outlines the interface for the CRS class. Indices and elements are stored in dense
vectors (lines 25-26). Beside the number of rows and columns the constructor (line 9) has a third
and forth parameter to specify the approximate bandwidth and the index base respectively. The
bandwidth parameter is only for optimization purposes, i. e. to minimize the number of required
reallocations in the initialization phase (see the remarks about the CRS Initializer implemen-
tation below). After the construction of a CRS objects the vectors values, columns and rows all
have length zero. The required length of these vectors is unknown until the initialization is com-
pleted. The initialization is handled by an external class which is here of type CRS Initializer

(specified in line 6). The CRS Initializer class will be introduced in more detail below. The
initializer can be instantiated through the method initializer (line 15) and receives the CRS

object it was assigned for initialization (line 17). The method allocate (line 21) can then be
used by the initializer to reallocate vectors values, columns and rows.

1 template <typename T, CRS_Storage Storage =CRS_General >

2 class CRS

3 {

4 public :

5 typedef T ElementType ;

6 typedef CRS_Initializer <T, Storage > Initializer ;

7

8 // -- constructors -----------------------------------------------------

9 CRS (int numRows , int numCols , int approxBandwidth=1, int indexBase );

10

11 ~CRS ();

12

13 // -- methods ----------------------------------------------------------

14 Initializer *

15 initializer ()

16 {

17 return new Initializer (*this , _approxBandwidth );

18 }
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19

20 void

21 allocate (int numNonZeros );

22

23 // ... methods to retrieve number of rows , cols , iterators , ...

24

25 DenseVector <Array <T> > values ;

26 DenseVector <Array <int > > columns , rows;

27

28 private :

29 int _numRows , _numCols , _approxBandwidth , _indexBase ;

30 };

Listing 8.8: Extract of the interface of the CRS storage scheme.

The CRS Initializer class uses vector types provided from the Standard Template Library
(STL) [71]. For this purpose the following data structures are used for storing indices and the
value of a single matrix element ai,j :

1 template <typename T>

2 struct CRS_Coordinate

3 {

4 CRS_Coordinate(int _row , int _col , T _value );

5

6 int row , col ;

7 T value ;

8 };

During the initializing phase the CRS Initializer class uses the COOR format. Once the
initialization is completed, the format gets converted into CRS. This requires sorting matrix
elements and therefore again the STL library gets used. Utilizing the STL algorithms for sorting
requires the definition of a less operator as illustrated in [75]. For two matrix elements ai1,j1 and
ai2,j2 the call operator () in line 6 returns true, if either i1 < i2 or i1 = i2 and j1 < j2:

1 struct CRS_CoordinateCmp

2 {

3 // return true if a < b

4 template <typename T>

5 bool

6 operator ()( const CRS_Coordinate <T> &a,

7 const CRS_Coordinate <T> &b) const ;

8 };

The interface of the CRS Initializer class is outlined in Listing 8.9. As was mentioned above,
the constructor receives the CRS object (line 5) which has to be initialized and stores a reference
of it (line 23). Matrix elements can be set using the () operator (line 13) and are stored in the
STL vector coordinates (lines 16-17) by appending new elements. Sorting elements is based
on the less operator introduced above (as specified in line 19) and can be triggered through the
sort method (line 10). Conversion into CRS format is handled in the destructor (line 7).

1 template <typename T, CRS_Storage Storage >

2 class CRS_Initializer

3 {

4 public :

5 CRS_Initializer(CRS <T, Storage > &crs , int approxBandwidth );

6

7 ~CRS_Initializer ();

8

9 void

10 sort ();

11

12 T &

13 operator ()( int row , int col );

14

15 private :
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16 typedef std :: vector <CRS_Coordinate <T> > Coordinates ;

17 Coordinates _coordinates;

18

19 CRS_CoordinateCmp _less;

20 size_t _lastSortedCoord;

21 bool _isSorted ;

22

23 CRS <T, Storage > &_crs;

24 };

Listing 8.9: Initializer for the CRS format.

Sorting of the coordinates vector is required at least once, namely when the destructor has
to perform the conversion from COOR to CRS format. Several optimizations are implemented
to speed up the initialization and conversion. The flag isSorted indicates whether vector
coordinates is sorted or not. Integer lastSortedCoord contains the position up to which
the vector is already sorted. Whenever a new matrix element gets appended, it will be checked
whether the sorting flag has to be changed. In case elements are appended in order, sorting gets
completely avoided. In case the order gets corrupted, the vector might get sorted from time
to time even before the destructor is triggered3. In this case the vector is already sorted up to
position lastSortedCoord. By first sorting the remaining elements the complete vector can be
sorted by a subsequent merge sort.

Like in Chapter 4 the implementation of matrix types delegate most of the functionality to
the implementation of the underlying storage scheme. Listing 8.10 illustrates the implementation
for symmetric sparse matrices. The type of storage scheme can be specified through a template
parameter (line 1) and an instance of this scheme gets stored internally (line 42). The constructor
(line 12) instantiates an initializer of type Engine::Initializer (as specified in line 9). Thus,
using CRS as storage implementation, the initializer is of type CRS Initializer. During the
initialization phase, elements can be accessed through the call operator () which delegates the
call to the initializer (line 19). A call of method finalize (line 26) ends the initialization
phase. By destroying the initializer (line 28) its destructor gets called. In case of the above CRS

implementation this results in conversion of the underlying scheme from COOR into CRS.

1 template <typename Engine >

2 class SparseSyMatrix

3 : public SymmetricMatrix <SparseSyMatrix <Engine > >

4 {

5 public :

6 // shortcut for element type

7 typedef typename SparseSyMatrix <Engine >:: ElementType T;

8

9 typedef typename Engine :: Initializer Initializer ;

10

11 // -- constructors -----------------------------------------------------

12 SparseSyMatrix(int dim , int approxBandwidth =1);

13

14 // -- operators --------------------------------------------------------

15 T &

16 operator ()( int row , int col )

17 {

18 assert (! _initializer)

19 return _initializer -> operator ()( row ,col );

20 }

21

22 // ...

23

24 // -- methods ----------------------------------------------------------

25 void

26 finalize ()

3Typically this in-between sorting will be triggered whenever a reallocation of the coordinates is required.
Initially the capacity of coordinates is set to approxBandwidth. If this turns out to be not sufficient, the capacity
is increased by approxBandwidth and sorting triggered.
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27 {

28 delete _initializer;

29 _initializer = 0;

30 }

31

32 // ...

33

34 // -- storage scheme ---------------------------------------------------

35 const Engine &

36 engine () const ;

37

38 Engine &

39 engine ();

40

41 private :

42 Engine _engine ;

43 Initializer *_initializer;

44 };

Listing 8.10: Symmetric sparse matrix class.

The following code snippet uses the tridiagonal matrix defined in (6.13) to exemplify the usage
of the SparseSyMatrix class. The approximate bandwidth is in this case 3 (line 2). After
initialization (lines 4-8) the matrix gets finalized (line 10) such that its internal storage format
gets converted into CRS format. Subsequently, linear algebra operations can be performed (line
15) or other numerical methods applied like iterative or direct solvers.

1 int n = 8;

2 SparseSyMatrix <CRS <double > > A(n, 3);

3

4 for (int i=1; i<=n; ++i) {

5 if (i>1) A(i, i-1) = -1;

6 A(i,i) = 2;

7 if (i<n) A(i, i+1) = -1;

8 }

9

10 A.finalize ();

11

12 DenseVector <Array <double > > x(n), b(n), r(n);

13 // ... init b, x ...

14

15 r = b - A*x;

A simple implementation of the matrix-vector product is illustrated in the next subsection.

8.5.3 Iterative Solvers

In order to utilize the cg-method introduced in Chapter 5 an appropriate matrix-vector product
has to be implemented. The implementation for sparse matrices with CRS format shown in
Listing 8.11 closely follows the algorithm given in [4].

Function crs gemv is capable of computing linear algebra operation of the form

y ← αop(A)x + βy

where op(A) can be either A or AT and β ∈ {0, 1}. Most of the parameters of the function
are specified similar to those of the BLAS function introduced in Chapter 3. The sparse matrix
A gets passed via parameters a (pointer to the values), ia (pointer to the row indices) and ja

(pointer to the column indices). In lines 9-13 pointers are shifted to enable the later use of the
bracket operator.

1 void

2 crs_gemv (Transpose trans , int m, int n, double alpha ,

3 const double *a, const int *ia , const int *ja ,

4 const double *x, double beta , double *y,
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5 int indexBase )

6 {

7 assert (( beta== double (0)) || (beta == double (1)));

8

9 // shift to index base

10 a = a - indexBase ;

11 ia = ia - indexBase ;

12 ja = ja - indexBase ;

13 x = x - indexBase ;

14 y = y - indexBase ;

15

16 const bool init = (beta== double (0));

17

18 if (trans == NoTrans ) {

19 for (int i=1; i<=m; ++i) {

20 if (init) {

21 y[i] = 0;

22 }

23 for (int k=ia[i]; k<ia[i+1]; ++k) {

24 y[i] += alpha *a[k]*x[ja[k]];

25 }

26 }

27 } else {

28 if (init) {

29 for (int i=1; i<=n; ++i) {

30 y[i] = 0;

31 }

32 }

33 for (int i=1; i<=m; ++i) {

34 for (int k=ia[i]; k<ia[i+1]; ++k) {

35 y[ja[k]] += alpha*a[k]*x[i];

36 }

37 }

38 }

39 }

Listing 8.11: Implementation of the matrix-vector product for sparse matrices in CRS format.

The implementation of the matrix-vector product can be imbedded into FLENS as usual:

1 template <typename T, CRS_Storage Storage , typename VX, typename VY >

2 void

3 mv(T alpha , const SparseSyMatrix <CRS <T, Storage > > &A,

4 const DenseVector <VX > &x,

5 typename DenseVector <VY >:: T beta , DenseVector <VY> &y)

6 {

7 // ... check assertions ...

8

9 if (Storage == CRS_General ) {

10 // call crs_gemv

11 }

12 }

The cg-method is now ready to be utilized as solver in the FEM class:

1 void

2 FEM :: solve ()

3 {

4 int M = mesh. numInteriorNodes ();

5 DenseVector <ArrayView <double > > u_ = u(_(1,M)); // interior nodes

6 cg(A, u_ , b);

7 }

Listing 8.12: Using the PARDISO solver in the FEM.
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8.5.4 Direct Solvers

In the following an interface for the direct solver PARDISO (PArallel DIrect Solver) is shown.
Alternatively, direct solvers from the packages SuperLU or UMFPACK can be supported simi-
larly4.

A detailed documentation of the PARDISO solver can be found in [65]. The implementation
of a FLENS wrapper for the PARDISO solver merely requires a good understanding of its
parameters:

1 template <typename E1, typename E2 >

2 void

3 pardiso (DenseVector <E1 > &x,

4 SparseSymmetricMatrix <CRS <double > > &A, DenseVector <E2> &b)

5 {

6 int pt [2*64*10];

7 memset (pt , 0, 2* sizeof (int )*64*10);

8

9 int maxfct = 1;

10 int mnum = 1;

11 int mtype = 2;

12 int phase = 13;

13 int n = A.numRows ();

14 double *a = A.engine (). values .data ();

15 int *ia = A.engine (). rows.data ();

16 int *ja = A.engine (). columns .data ();

17 int perm[n];

18 int nrhs = 1;

19 int iparm [64];

20 iparm [0] = 0;

21 iparm [2] = 1;

22 int msglvl = 1;

23 double *y = b.data ();

24 double *sol = x.data ();

25 int error ;

26

27 pardiso_ (pt, &maxfct , &mnum , &mtype , &phase , &n, a, ia , ja, perm , &nrhs ,

28 iparm , &msglvl , y, sol , &error );

29 }

The PARDISO solver can now be utilized in the FEM class as follows:

1 void

2 FEM :: solve ()

3 {

4 int M = mesh.numInteriorNodes ();

5 DenseVector <ArrayView <double > > u_ = u(_(1,M)); // interior nodes

6 pardiso (u_ , A, b);

7 }

Listing 8.13: Using the PARDISO solver in the FEM.

8.6 Summary of the Chapter

This chapter demonstrated how FLENS can be utilized for the implementation of the Finite Ele-
ment Method. The simplicity of the problem as well as the implementation makes the presented
program examples attractive for teaching. Furthermore, the Finite Element Method was used
to motivate the implementation of sparse matrix types. These types were realized following the
same concepts used in Chapters 3 and 4. Linear algebra operations and interaction with external
libraries could be supported easily and efficiently.

4All these packages are briefly introduced in Section 2.1.4
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9 Summary and Conclusions

The development of scientific software requires the collaboration of specialists from different dis-
ciplines. For an effective collaboration it is required that these specialists are able to contribute
to the software development while working solely on their own area of expertise. In an ideal
collaboration a numerical analyst might contribute a first implementation of a new numerical
method. However, this prototype is not necessarily optimized for peak performance. A special-
ist in high-performance computing then tunes this implementation to exploit modern hardware.
Subsequently, researchers from disciplines like science, engineering, finance or medicine can uti-
lize this numerical method in their software applications to simulate or optimize domain specific
problems. Such an ideal form of scientific software development is only possible by using sophis-
ticated tools that ease and simplify the collaboration.

In order to cope with these demands, this work describes our FLENS library. It shows
how FLENS can be utilized as a flexible building block for the effective development of efficient
scientific software. FLENS extends the C++ programming language for features that are relevant
for scientific computing. Many techniques used in the design and implementation of FLENS can
also be found in other libraries in this field. However, the way these techniques are combined
and customized makes FLENS distinct.

One crucial feature of FLENS is the possibility of extending C++ for matrix and vector types.
The Curiously Recurring Template Pattern (CRTP) is used and adapted to realize multilevel class
hierarchies for matrix and vector types. One advantage of applying the CRTP is the avoidance
of virtual functions which can lead to a considerable runtime overhead. Actually, many libraries
apply the CRTP for this sole reason. In FLENS however, the CRTP also plays an essential
role within its high-level abstraction for linear algebra operations. FLENS allows the usage of
overloaded operators in order to provide an expressive notation. As this work shows, it is not
trivial to achieve this without sacrificing efficiency. Performance issues in this respect are mainly
due to the unnecessary and unintended creation of temporary objects. Two existing approaches
are introduced for solving this issue. In the first approach, the concept of closures known from
functional programming gets adapted to C++. While this approach allows the utilization of
external high-performance libraries for the computation of linear algebra operations, it turns
out that it is far from being a feasible method for practical applications. The second approach
is based on the expression template technique. While this offers a much more feasible method
for the realization of a linear algebra package, the resulting code is hard to maintain and to
extend. Further, this approach is not capable of exploiting external high-performance libraries
for the computation of linear algebra operations. In FLENS the ideas of these two approaches
are combined. This results in a mechanism that makes it possible to exploit external libraries
for high-performance computing without introducing any runtime overhead. At the same time
this mechanism remains easy to extend, maintain and use. Essential for this accomplishment is
the CRTP based design of the class hierarchies.

At first, this work illustrates the seamless integration of BLAS (Basic Linear Algebra Sub-
programs) and LAPACK (Linear Algebra PACKage) into FLENS. BLAS and LAPACK are well
established standards in high-performance computing. Various BLAS and LAPACK implemen-
tations which are capable of exploiting modern hardware architectures are available. However,
these libraries exhibit a rather low level of abstraction and their usage requires the knowledge
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of many technical details. This work shows how FLENS can be used to provide a high-level
interface for these libraries. Overloaded operators provide a natural and expressive notation for
linear algebra operations. Due to the techniques embedded in the architecture of FLENS there is
no runtime overhead involved. Developers using FLENS receive the full power and functionality
of the underlying BLAS and LAPCK implementation in a very convenient way. However, the
ease of use and expressiveness provided by FLENS is more than just ‘syntactic sugar’, instead it
is the key to enable numerical analysis to realize modern numerical methods in a form which is
close to the mathematical notation. At the same time specialists in high-performance comput-
ing can tune the underlying implementation for performance without modifying these numerical
methods.

In order to endorse and enhance the implementation of new state of the art algorithms, the
sole integration of BLAS and LAPACK is not sufficient. As illustrated in this work, the numerical
discretization of partial differential equations often leads to matrices that exhibit very special
structures. Standard libraries like BLAS and LAPACK are not always capable of exploiting
these structures. The crucial feature in this respect is the flexible extensibility of FLENS. Several
examples are given to motivate and illustrate how FLENS can be extended for new matrix or
vector types. Extending the set of matrix and vector types also requires the extension of the
set of supported linear algebra operations. As this work shows, FLENS provides a simple and
transparent mechanism to achieve both.

Several example are given in order to illustrate how an implementation of iterative methods
can be reused for new user-defined matrix and vector types. Hereby it is not required to modify
the existing implementation. As mentioned above, this gets first exploited to take advantage of
some special matrix structures that occur in numerical applications. Furthermore, this concept
is also applied to attain the parallelization of numerical methods on computer clusters. This
was in particular illustrated for the multigrid method by utilizing the Dirichlet-Poisson problem
as a toy example. The same implementation can be reused to solve the problem in different
space dimensions and even parallelization does not require any modifications. Subsequently, the
multigrid method is used as a component in a simple solver for the Navier-Stokes equations and
again, parallelization of this solver immediately follows.

Despite the particular strengths of FLENS there are a few limitations. For the implementa-
tion of FLENS, various template techniques were extensively applied. Unfortunately, template
instantiation can have a major impact on compilation time. Hence it can take a long time to
compile large applications that use FLENS as a building block. In order to cope with this issue,
techniques like explicit instantiation or precompiled headers [78] could be utilized to speed up
the build time. A further issue resulting from using C++ templates is the error messages that
C++ compilers typically produce. Even a slight error can result in many lines of cryptic error
messages. How to decrypt and manage such error messages is covered in [78]. In the upcoming
C++ standard the concepts extension [68] will further enhance the support for generic program-
ming. Using this extension the issue can be resolved completely. Another issue is related to
the design goals of FLENS. Consider the expressive notation that FLENS provides for linear
algebra operations. As shown in Section 4.3.3 several efforts were realized in FLENS to prevent
obscure side-effects like the unintended creation of temporary objects. For programmers who are
inexperienced in scientific computing this feature of FLENS might seam to be inconvenient at
first. However, it is a crucial requirement for the serious development of scientific software.

Currently the FLENS interface for BLAS and LAPACK supports only a subset of the func-
tionality provided by these libraries. Since its public release in July 2007 the support has been
increased. Also the number of numerical methods and matrix/vector types in FLENS could be
extended. This progress is mainly due to various contributions from the steadily growing com-
munity of FLENS developers. In order to further encourage this process, the FLENS community
needs to be supported through tutorials, documentation as well as example implementations for
various numerical applications. We hope that FLENS becomes the building block of choice for
the development of scientific software.



A FLENS Storage Schemes for
BLAS

A.1 Full Storage Interface

The interface for classes FullStorage, FullStorageView and ConstFullStorageView can be
grouped into the categories initialization, access to internal data structures, creation of views,
constructors/assignment operators and public typedefs:

1. Initialization, element access and changing size/index base:

int
First valid row index.

firstRow() const;

int
First valid column index.

firstCol() const;

int
Last valid row index.

lastRow() const;

int
Last valid column index.

lastCol() const;

const T &
Element access.
Debug mode: checks whether
indices are valid.

operator()(int row, int col) const;

T &

operator()(int row, int col);

void Changes size or index base.
Previously stored data will
not be copied!

resize(int numRows, int numCols,

int firstRow=1, int firstCol=1);

2. Access to internal data structures: in particular these methods are suited for calling BLAS
and LAPACK functions (see Section 3.3 and 3.4).

int
Number of rows.

numRows() const;

int
Number of columns.

numCols() const;

int
Leading dimension.

leadingDimension() const;

int Stride in memory between row
elements.strideRow() const;

int Stride in memory between
column elements.strideCol() const;

151



152 A FLENS Storage Schemes for BLAS

const T *

Pointer to the first element.
data() const;

T *

data();

3. Creation of views: FLENS provides several methods for the creation of views referencing
parts of a full storage scheme. These methods reflects what kind of views are frequently
needed in numerical applications and can roughly be grouped in three subcategories de-
scribed in the following.

(a) Creation of views referencing sub-matrix blocks:

ConstFullStorageView<T, Order>
Creates a view object referencing
a sub-matrix block. The
referenced block has row indices
fromRow,..,toRow and column
indices fromCol,..,toCol in
the original matrix.
Index bases for the view can be
specified by firstViewRow and
firstViewCol.

view(int fromRow, int fromCol,

int toRow, int toCol,

int firstViewRow=1,

int firstViewCol=1) const;

FullStorageView<T, Order>

view(int fromRow, int fromCol,

int toRow, int toCol,

int firstViewRow=1,

int firstViewCol=1);

(b) Views referencing complete rows or columns (hence these results in array views):

ConstArrayView<T>

Creates an array view
of a complete row.

viewRow(int row, int firstViewIndex=1) const;

ArrayView<T>

viewRow(int row, int firstViewIndex=1);

ConstArrayView<T>

Creates an array view
of a complete column.

viewCol(int col, int firstViewIndex=1) const;

ArrayView<T>

viewCol(int col, int firstViewIndex=1);

(c) Views referencing parts of rows or columns:

ConstArrayView<T>

Creates an array view of a
partial row.

viewRow(int row, int fromCol, int toCol,

int firstViewIndex=1) const;

ArrayView<T>

viewRow(int row, int fromCol, int toCol,

int firstViewIndex=1);

ConstArrayView<T>

Creates an array view of a
partial column.

viewCol(int col, int fromRow, int toRow,

int firstViewIndex=1) const;

ArrayView<T>

viewCol(int col, int fromRow, int toRow,

int firstViewIndex=1);
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4. Constructors and assignment operators are implemented to provide functionality analogous
to that provided for arrays (see Section 3.2.3).

FullStorage(int numRows, int numCols,
Creates a full storage storage
scheme.

int firstRow=1,

int firstCol=1);

5. Public typedefs:

ElementType Element type.
NoView Type of a full storage scheme,

which is no view.
ConstView Types returned by the view

methods.View

ConstArrayView Types returned by viewRow

and viewCol methods.ArrayView

The storage order of a full storage scheme can be retrieved using the StorageInfo trait:

template <typename FS >

void

dummy(const FS &fs)

{

StorageOrder order = StorageInfo <FS >:: order ;

// ...

}

A.2 Band Storage Interface

The interface for classes BandStorage, BandStorageView and ConstBandStorageView can be
grouped into the categories initialization, access to internal data structures, creation of views,
constructors/assignment operators and public typedefs:

1. Initialization, element access and changing size/index base:

int First valid index for rows
and columnsfirstIndex() const;

int Last valid index for rows and
columnslastIndex() const;

int
Number of sub-diagonals

numSubDiags() const;

int
Number of super-diagonals

numSuperDiags() const;

const T &
Element access.
Debug mode: checks whether
indices are valid.

operator()(int row, int col) const;

T &

operator()(int row, int col);

void
Change size or index base.
Previously stored data will
not be copied.

resize(int numRows, int numCols,

int numSubDiags, int numSuperDiags,

int indexBase=1);
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2. Access to internal data structures: together with numSubDiags and numSuperDiags (from
above) these methods are typically needed for calling BLAS and LAPACK functions dealing
with band storage schemes (see Section 3.3 and 3.4).

int
Number of rows.

numRows() const;

int
Number of columns.

numCols() const;

int
Leading dimension.

leadingDimension() const;

const T *

Pointer to first element.
data() const;

T *

data();

3. Views referencing parts of rows or columns:

ConstArrayView<T>
Creates an array view
referencing the diag-th
diagonal.

viewDiag(int diag, int viewIndexBase=1) const;

ArrayView<T>

viewDiag(int diag, int viewIndexBase=1);

ConstBandStorageView<T, Order>

Creates a band storage
view referencing diagonals
fromDiag,...,toDiag.

view(int fromDiag, int toDiag,

int viewIndexBase=1) const;

BandStorageView<T, Order>

view(int fromDiag, int toDiag,

int viewIndexBase=1);

4. Constructors and assignment operators are implemented to provide functionality analogous
to that provided for arrays (see Section 3.2.3).

BandStorage(int numRows, int numCols,

Creates a storage scheme for
a banded matrix.

int numSubDiags,

int numSuperDiags,

int indexBase=1);

5. Public typedefs and traits:

ElementType Element type.
NoView Type of a band storage

scheme, which is no view.
ConstView Types returned by the view

methods.View

ConstArrayView Types returned by viewDiag

and viewDiag methods.ArrayView

The storage order can be retrieved using the StorageInfo trait:

template <typename BS >

void

dummy(const BS &bs) {

StorageOrder order = StorageInfo <BS >:: order;

// ...

}
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A.3 Packed Storage

The interface for class PackedStorage can be grouped into the categories initialization, access
to internal data structures, constructors/assignment operators and public typedefs. Views are
not supported:

1. Initialization, element access and changing size/index base:

int First valid index for rows
and columnsfirstIndex() const;

int Last valid index for rows and
columnslastIndex() const;

const T &
Element access.
Debug mode: checks whether
indices are valid.

operator()(int row, int col) const;

T &

operator()(int row, int col);

void
Change size or index base.

resize(int dim, int indexBase);

2. Access to internal data structures: these methods are suited for calling BLAS and LAPACK
functions dealing with packed storage schemes (see Section 3.3).

int
Number of rows/columns.

dim() const;

const T *

Pointer to first element.
data() const;

T *

data();

3. Constructors and assignment operators are implemented to provide functionality analo-
gously to that provided for arrays (see Section 3.2.3).

PackedStorage(int dim, int indexBase=1); Creates a packed storage
scheme.

4. Public typedefs and traits:

ElementType Element type.

The storage order and wether the upper or lower part gets stored in the packed storage
scheme can be retrieved using the StorageInfo trait:

template <typename PS >

void

dummy(const PS &ps)

{

StorageOrder order = StorageInfo <PS >:: order ;

StorageUpLo upLo = StorageInfo <PS >:: upLo;

// ...

}
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Modellierung von Strömungen. Springer, Berlin, 2002.

[40] C. W. Hirt, B. D. Nichols, and N. C. Romero. SOLA: A numerical solution algorithm for
transient fluid flows. Technical report, Los Alamos Report LA-5852, jan 1975.

[41] IEEE. IEEE Standard Glossary of Software Engineering Terminology. IEEE Standard 729,
1983.

[42] R. Jones and R. Lins. Garbage collection: Algorithms for Automatic Dynamic Memory
Management. John Wiley & Sons, 1996.

[43] P. Knabner and L. Angermann. Numerical Methods for Elliptic and Parabolic Partial Dif-
ferential Equations, volume 44. Springer, New York, 2003.

[44] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. Basic Linear Subprograms for
Fortran usage. ACM Transactions on Mathematical Software, 5(1):308–323, 1979.

[45] M. Lehn. FLENS: Flexible Library for Efficient Numerical Solutions. http://flens.sf.net.

[46] X. S. Li and J. W. Demmel. SuperLU DIST: A Scalable Distributed-Memory Sparse Direct
Solver for Unsymmetric Linear Systems. ACM Transactions on Mathematical Software,
29(2):110–140, June 2003.

[47] T. Neunhoeffer M. Griebel, T. Dornseifer. Numerische Simulation in der Strömungslehre.
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